
pp

'N# 7

'All
IJ -----

xI(

.-. it -- 1 Ct- j tI ' "p

Fi ' 7~t *r ' $ tt ~ - ' .. <~

~~tbvt& ft owl' Atre4
CAM "-'

All -14.A t4 % 4 Wrwr.

of rt~~~. py yan fr, xtpt-~~~~ vibot wlt
9* V-;Z-

'y v iisttfo Sr

U10 eftat Of t etma "e repduced oy vany fotrms eiep
thCwmwmais nt, wi~ostrite permisson Higher

bfwlimtwor ainc.va fro c I a odut al b steratioes'
aareS.11.sm+a

it vu~bu c it I ~ rat t

D1$"IAUVS

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEFAD ICOSCLTINSR

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'$ CATALOG NUMBER

TR-7 _ _ _ _ _ _ _ _ _ _ _

4. TITLE (and Subtitle) TYin ep'.ta,,, E-i '

"
TfFinal ep~t.-Jl

Techqiques for Operating System Machines., 0ct .976--ay *7

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

Higher Order Software, Inc.
_, // DAAdC,,29-76C 06 _

n __.________ ____

" O fMNG OAeAIZATiON NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT. TASK
AREA & WORK UNIT NUMBERS

Higher Order Software, Inc. -_
Cambridge, MA- 02139 "

11. CONTROLLING OFFICE NAME AND ADDRESS u- 1FPJ DATE

Higher Order Software, Inc. N RJu PA S 7

Cambridge, MA 02139 13. NUMBER OF PAGES
132 - - "

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) 15. SECURITY CLASS. (of this reP]

Army Research Office Unclassified
Research Triangle Park, NC 15&. DECLASSIFICATION/DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited. ..

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES C.,

19. KEY WORDS (Continue on rev"r~ side if neceinry and identify by block number)

Operating Systems, Machines, Formal Methodology, Axioms, Control Strutuies,

Data Types, Resource Allocation, Security, System Layers.

20. ABSTRACT fContinue on reevrue side if necessary and identify by block numbe

ABSTRACT: One of the most difficult problems facing system designers is that

of resource allocation to a particular machine. In this report we discuss the

basic concepts of resource allocation to, by and from an operating system and

the techniques of describifig these concepts in terms of the HOS specification

language, AXES. We show here that Higher Order Software (LOS) systoms (includ-
ing o-erating systeris) are secure. The -IOS/AXES concepts are demonstrated by

example specifications of an operating system which uses as a model the APOLLO

FORM
DO 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entere,.

7.

,.1| t

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (when Data Entered)

20. on-board flight software system. The concept of a Higher order Machine
(HOM), whose purpose is to replace today's intermediate machine layers
and communicate directly to an HOS specified system is discussed.

e'LSSF.
SECRIT CLSIFCT V TISPG

HIGHER ORDER SOFTWARE, INC.
843 Massachusetts Avenue
Cambridge, MA 02139

TECHNICAL REPORT #7 i

TECHNIQUES FOR OPERATING SYSTEM~ MACHINES

July 1977

Prepared for
Army Research Office

Research Triangle Park, NC

*

ACKNOWLEDGEMENTS

This report was prepared under Contract No. DAAG29-76-C-0061,

sponsored by the Department of the Army, U.S. Army Research

Office, Research Triangle Park, North Carolina.

The authors would like to express appreciition to Andrea Davis

and Gail Lopes for the preparation of this report.

TABLE OF CONTENTS

Section I OPERATING SYSTEM MACHINES WITH RESPECT TO
RESOURCE ALLOCATI ON

M. Hamilton and S. Zeldin

Section II THE SOFTWARE SECURITY PROBLEM AND HOW TO
SOLVE IT

a S. Cushing

Section III SOME DATA TYPES FOR OPERATING SYSTEMS

S. Cushing and W. Heath

ISection IV SOME SPECIFICATIONS FOR THE OPERATING SYSTEM
OF THE APOLLO GUIDANCE COMPUTER (AGC)

W. Heath

Section V A HIGHER ORDER MACHINE (HOM) FOR HIGHER ORDER
SOFTWARE (HOS).I W. Heath

Section I

OPERATING SYSTEM MACHINES

WITH RESPECT TO

RESOURCE ALLOCATION

by

N1. Hamilton and S. Zeldin

"Ig-, A,

TABLE OF CONTENTS

Section Page

1.0 INTRODUCTION ... 1

2.0 BACKGROUND ... 4

3.0 RESOURCE ALLOCATION .. 6

4.0 SYSTEM LAYERS .. 7

5.0 THE IMPLEMENTATION OF A SYSTEM 19

6.0 THE SPECIFICATION OF AN IMPLEMENTATION OF A SYSTEM
WITH HOS 22

7.0 ANALYSIS OF THE AGC OPERATING SYSTEM 26

8.0 AXES SPECIFICATION TECHNIQUES 33

9.0 SUM.ARY ... 49

Appendix ... 51

References 57

FIGURES

1. Definition Layers with Respect to Definition Machines 10
2. Description Layers with Respect to Description Machines..... 11
3. Implementation Layers with Respect to Implementation

Machines 12
4. One Viewpoint of a System Development Process (Today) 14
5. HOS Approach to Software Systems Development 17
6. Development and Execution of a System 18
7. Example of an HOS System Allocated to Execute on an

HOS Machine .. 23
8. System R as Viewed by Machine OS 24
9. An Instance of an OS Structure Definition 25

10. Top-Level Description of an Instance of the AGC
Executive Machine as Part of a Machine System 28

11. An Instance of the Waitlist Machine with Respect to the
IWaitlist Machine Environment 29

12. Resource Allocation of Machines to One Implementation
Layer of AGC Operating System 32

13. An Example of Abstract-Control-Structure Definition
Layers with Respect to AXES 36

14. An Instance of the COJOIN Structure 44

GHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

1.0 INTRODUCTION

An operating system enables a user to share resources of a computer system [1].

General characteristics of such a system include scheduling computations,

protecting processes from interfering with one another, accessing instruc-

tions and data, and measuring performance of the system. On one hand, an

operating system must interface with the user, while, on the other hand,

the operating system must interface with the computer itself. Changing

usGr requirements often requires extensive modifications to such systems.

The specification for such a system must be designed so that such modifi-

cations do not imply a redesign. In addition, we must try to separate

those functions that directly interface with the hardware so that we can

minimize the effects of implementing the OS design.

6The determination of those functions which are to be system support func-

tions usually depends on such considerations as efficiency, convenience,

availability, habit, clarity, commonality, and clever programming.

It does seem advantageous, however, to choose system support functions

based on criteria which are more standard than those used in conventional

svstems. That is, if methods were used that were not ad hoc, the pro-

perties of a system, both individually and relative to each other, could

be more easily understood throughout a given development process.

A proliferation of real-time tactical operating systems has been observed.

This observation has lead to the suggestion of a family of operating systems

by the Navy [2], and an operating system nucleus by the Army [3].

Attempts at standardizing layers [41 of a system have been made. For

oxample, some HOLs do not permit the combination of HOL code with assembly

language code [5]. Even for the Apollo flight software, applications were

not allowed to perform OS functions, interpretive code functions [t], man/

:achine functions [71, or error recovery functions [8] v,-thou: going through

the standard support functiohs [9]. For such reasons, man) designers

have advocated hierarchical operating system concepts [l], LI].

OE
S1

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . 1617) 661-800

- ~ - - ~ -- A

A Higher Order Software (HOS) system is specified by hierarchically

grouping abstract control structures. Since each control structure is con-

sistent with the properties of HOS, any system constructed from groupings

of these control structures, not only is able to maintain interface cor-

rectness among hierarchical components, but, system characteristics can

be derived so that verification of such a system is a more reliable process.

An example of system characteristics for a real-time, multiprogrammed,

dynamic scheduling algorithm based on HOS principles has already been shown [12].

In this report, we are concentrating on the subject of operating systems

(OS) in terms of the methodology of HOS. This section discusses the basic

concepts of resource allocation, to, by and from an operating system,

and the techniques of describing these concepts in terms of the specifi-

cation language AXES. The second section discusses the concept of secure

systems. The third section discusses some general data-t)pe definitions

'for operating systems, two of which (time and address) are used in the fourth

section. The fourth section provides example specifications of an operating

system machine which uses as a model the Apollo on-board flight software

system. The fifth section discusses a concept for a Higher Order Machine

(HOM).

The intent of this project is several-fold. It is hoped, that from this

effort, people will have a better understanding about the issues of systems

design; and, in particular, about the issues of resource allocation. We

show here that HOS can be used to define operating systems and that these

systems are, by their very nature, secure. Not only can a machine, such

as an operating system be secure, but the user systems of that operating

system can be secure as well, thus making a complete system definition

a secure one. The examples selected from the Apollo operating system are

intended to demonstrate the'techniques of HOS. The techniques shown here

can be used to define other operating systems as well as systems in general.

Our next step in the specification of operating systems is to take ad-

vantage of the many lessons we learned in the specification of the AGC

operating system with respect to machines in general in order to define

a complete specification of an ideal operating system as a machine. This

2

f-' HER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS02139 • (617) 661-89C

will include the definition of more specific control structures and data

types for a family of operating systems. We have used more general HOS

control structures and data types for this prototype effort. But, it is

clear that certain of the operations defined here for the Apollo system

could be used as specification macros for operating systems in general.

These macros could then be selected from or added to at will from a library

of OS macros. The HOM is envisioned to ultimately replace intermediate

machine layers (such as operating systems) and talk directly to HOS

systems. The intent of the HOM is to adjust to a system design instead

of the system design adjusting to a machine.

OC

HI,4GH !: ORDER SOFTWARE, I-NC.,. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

2.0 BACKGROUND

The choice of an operating system as a demonstration of HOS is quite

appropriate since it has characteristics we wish to demonstrate in de-

scribing the concept of an HOS machine. Our first task on this project

was to search for a representative operating system to use as a demonstration.

In this process, it occurred to us that the operating system we had grown

up with (i.e., the Apollo Guidance Computer (AGC) operating system) was a

more appropriate candidate to work with than others we had looked at.

The reasons for this decision are many: the AGC operating system had flown

successfully on several real missions to the moon and back and thus had a

few "battle" experiences of its own; we are familiar with the design of the

AGC operating system, both from many years of experience as designers and

as users of the system; the AGC operating system includes many, interesting

operating system capabilities from the point of view of specification; the

AGC system was intended to be a secure system; the AGC operating system

appears to be more efficient than others we have looked at (it was forced

to be efficient in order that all the mission programs had enough time and

memory to perform their functions). In the context of the functions it

performs, the AGC operating system (or its derivatives, such as the HAL

run-time package [5] appears to be a simpler and more elegant design

(from both an algorithmic and an organizational point of view) than others

we have looked at and it is thus easier to work with when comparing the speci-

fication of such a system with its implementation; we know well the benefits

and the shortcomings of the AGC system.

We will not attempt to describe here the entire AGC operating system, but

rather we will show typical algorithms and data types which exist in the

AGC operating system machine. The emphasis, here, will not be how to de-

fine the AGC operating system, per se, but, rather, we wish to show a tech-

nique using portions of this system in order that we can use such an example

as an aid in describing otheri systems (including other operating systems).

This exercise has been an extremely interesting one from several stand-

points. Although we were once intimately involved in the AGC system, it

took a great deal of time and patience to revisit this environment. This

4

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

was mostly due to the fact that the AGC system was poorly: documented (al-

though the documentation of the Verification and Validation (V&V) contractor

turned out to be better than our own (13]). Our only solution, however,

for completely understanding the system (which included, by the way, our

own designs and our own coding) was to go back and pour over the original

code, which was very clever and difficult to understand. Fortunately,

the basic concepts upon which the code was based (which were powerful ones

from the standpoint of OS capability) were quite simple, and that fact made

it easier to reconstruct the pieces.

The complete AGC operating system contains many capabilities. These include

scheduling of processes, error detection and recovery, I/O handling (in-

cluding uplink to the spacecraft and downlink to the ground mission control),

and multilevel display interfaces between the AGC and the astronaut and

between the AGC and the ground. To handle its process load, th'e AGC opera-

"ting system had several priority systems. In the software part of the AGC

we scheduled processes dependent on hardware interrupts, software job

priorities, and software task times. We will discuss here specifications

which have to do with the scheduling of jobs based on priority (Executive

system) and scheduling of tasks based on time (Waitlist system). Both of

these machines (i.e. the Waitlist and Executive machines) handled all the

types of secure data that are necessary for asynchronous machines.

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661.8900

3.0 RESOURCE ALLOCATION

One of the most* difficult problems facing systems designers is that of

preparing a design to execute on a particular machine. This process

of preparing systems to communicate with each other is called resource

allocation. More subtle problems appear when we attempt to redesign our

system to fit a machine. Once having done so, we can no longer under-

stand our original design, since the resulting complexity hides the

original intent of the design with camouflages of implementation. We

not only cannot trace input and output throughout our system design, but

we are no longer even sure which input and output is relevant to our

original problem. To try to change such a system with a new system

requirement is a presumptous notion.

An advantage of an HOS system is that all input and output can be traced

throughout a given system definition. A second advantage of HOS is that

we can separate the data flow with respect to different layers of imple-

mentation. Such a feature allows us to look at only those system inter-

faces which are relevant at the time when they are relevant, and only at the

time they are relevant, in each step of a system design process. Thus

we are not forced to redesign one layer when we wish to implement that

layer on a machine or when we wish to have it reside dynamically with

another process in the same environment. We often hear the complaint

from system designers about the problem of attempting to design a system

"top-down" and then being forced to add "extra stuff" on a lower level

of the top-down design when resource allocation is addressed. This

forces an iteration of the design process in order to incorporate that

extra stuff back at the top and down through the top-down design to main-

tain consistency of the overall design. (Some designers merely add

that extra stuff without worrying about it because they don't know

what to do with it, except to say it came from some other system; but

then they lose track of its influence on their own system and the in-

fluence of their own system on other systems.)

In order to resource allocate a given system to a particular machine, it

is necessary to define both the system and the machine in such a way

that a change to one won't affect the other. It is also necessary to

6

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

define the machine in such a way that the users of the same machine only

affect each other when they are explicitly defined to affect each other.

4.0 SYSTEM LAYERS

With the formalism of HOS, we define a standard set of objects and

characteristics of objects that should be described with each system as

well as a standard set of nomenclature that should be used in describing

these objects. We emphasize in our notation the clear separation of the

layers within one system or between systens. In particular, we take

great care to distinguish bet ween an instance of a layer (represents one

performance pass of a system)* and a laye (represents all performance

passes of a system). We distinguish between communication within one.

layer, which always represents the same instance, and communication between
layers, which takes place when an instance of one layer communicates with

an instance of another layer (e.g., real-time asynchronous processes).

We emphasize the importance of separating the layers of a system develop-

ment. For example, we distinguish between (1) the system and the defini-

tion of that system, (2) the system and the description of that system,

(3) the system and the implementation of that system, and (4) the system

and the execution of that system.

A machine is a system which executes another system. There are dedicated

machines, synchronous machines, and asynchronous machines. A dedicated

machine always performs the same function. Thus the "mapping" of an AXES FUNCTION

could be viewed as a dedicated machin~e. A synchronous machine must only

execute one system to completion before another system uses that machine.

An AXES OPERATION could be viewed as a synchronous mac.hine. An asynchronous

machine may execute instances of more than one system before either system

reaches execution completion. Thus, an AXES STRUCTURE cam be viewed as an

asynchronous mach-ine (see Section 5.0 of this report for a discussion of

AXES control structure definitions).

The environment of a machine must be secure in that (1) a user should not have

to be concerned with any of the details that have to do with its execution.

*as opposed to a level which is a step of refinement (or more explicit

definition) within a given instance of a layer.

7

j HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661 -8900

-AL.

and (2) a user should not be allowed to have visibility into another user's

environment.

In an asynchronous machine there are several types of data, all of which

must be maintained as secure data throughout all instances of the machine.

These types of data include (1) temporary values which exist for one or

more users; (2) values from another machine with respect to the machine

itself as a user; (3) values with respect to the variables of the machine

itself; (4) values which are functionally related to a previous instance

of the machine for a given instance of the machine system; (5) values

which are functionally related to a previous instance of the machine for

a given instance of a user and; (6) values which are functionally related

to a previous instance of the machine for a given instance of another machine.

The definition (dynamic state) of a system is equivalent to the formal

semantics of a system. The description (static state) of a system is

equivalent to the syntax of a system. The implementation (static state

which includes a system, a machine to run that system, and the mechanisms

necessary to relate that system to the machine) of a system is equivalent

to that same system ready to be exercised. The execution (dynamic

state which includes a system, a machine running that system, and mechanisms

which relate that system to the machine) of a system is that system being

exercised by a machine.

Not only must we be aware of the types of system layers, but we also must

be aware of how many different definitions, descriptions, implementations,

and executions are possible or potentially possible for one system. Most

important, we must determine those states which are necessary and those

which are not only unnecessary but which are causing serious difficulties

in the development of a system. In order for us to make such wise

distinctions followed by wise judgements, we must have available a means

for determining both the types and the nature and number of states

within each tNpe.

Consider the process of determining the successive layers within a layer

type as they relate to the evolving process of a system. Each of these

processes is much like the process of a writer relating his thoughts for

8
HIGHER ORDER SOFTWARL, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-890:-

a reader to understand. Not only must he convey the information he wants

to convey, but he must also convey it in the framework of the reader [14].

Each successive layer is a level of refinement with respect to the previous

layer in that such a layer is more dependent on a particular machine.

The first system definition (Figure 1) is a cloud* (or a very fuzzy

idea of a system). Each successive definition should be more explicit

than the previous definition, in that it is more dependent on a particular

definition machine. The process continues until we think we have com-

pleted the most primitive definition of the system. Today, processes

of refinement (i.e., decomposition) are manual processes.

The first system description (Figure 2) is usually a verbal cloud followed

by statements written in English, some sort of "pidgin" English, some

sort of so-called "specification" language, a higher order language (HOL),

an assembly language, and finally the primitive object code for some

machine. Each successive description is more dependent on a particular

description machine. In the description process, the support layers

communicate with a system in its static state.

The first system implementation (Figure 3) is a cloud (i.e., output and

input), the algorithm "machine" that will produce the output from the

input, and the operating system(s) machine(s) which operate(s) the al-

gorithms. Each successive implementation is more dependent on a particular

implementation machine. This process continues until we reach the primi-

tive machine instructions which are prepared to "run" the results of the

most recent implementation.

Finally, when we put together a system, we are ready to exercise that

system. In a typical multiprogrammed or multiprocessed system, for

example, many different execution configurations of that system are possible--

in fact, so many that we can't count them. In the execution process we

are concerned with systems communicating with each other dynamically; that

is, the objects of one system communicating with the objects of another

system.

Bob Fitzwater has suggested the term, "cloud" to describe the initial
stage of system development.

9

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

a~- >o0
r- 0

C,,.

co

0O4-4

Q.) 10

0- 4-) 0

_i=:
(j)L

I.01

- x.~.

1.-U
(Vwr

s-)u

CJ 4-J

e,, %0- 14-

XLC) Q.)
LUJ

0d

01

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 .(617), 661-8900

CD,

E- C,,

0 -l v-
- -)

0 u

C~u

(A
d)0) -

,c/) 13- c;W
V)~ NU L

cc- / 0... 4.
-U

3

L.c flr5-

cc,**
0E

LH I G H E R ~ ~ 4 O R D E R) S O T A E/N. - 8 3 M S A H S T S A E U A M R D E A S C U E T -0 1 9 - (1) 6 1 -

>F.

Cc

W 0 c

a
'0

Q--e
0)..- 0)in

/ I.-a
c(0

CL

0 oc-

I C
I QJO

U) 0 '

12j

HIHE ODE OFWALIC.- 43MSSCHSEI ALNE AMRIGE ASACUSTS 219 67)66-80

Sometimes the need for the definition of the layers of a system depends on

how the system is to be developed and executed. One project might wish to

compile source code before a target system is ready to be executed.

Another might wish to interpret the code in real time. Thus, not only

must the layers of a system be determined, but the manager must also

determine when, how, and where their transformations take place.

No wonder we are all confused! Not only are we not aware that such pro-

cesses exist (or states within each process), but we also do not know

how to clearly separate these processes. A case in point is the manner

in which most designers conceptually view the development process

of a system (Figure 4). Not only do we start with a cloud, but more

often than not, some part of the cloud remains throughout the develop-

ment process. In fact, sometimes the cloud becomes increasingly larger

as we proceed to the final deliverable. Once, however, we know how to

make layer distinctions, we can take advantage of such a method to make

visible the development of all the components of a system.

Once we are able to define layers explicitly, we will be able to take

advantage of more simple concepts for layer communication as opposed to

ad hoc methods we apply today. With HOS, we think of layer communication

as being one of reource allocation (or assignment). That is, one layer,

with respect to another layer, assigns a name to a value or a value to

a name. Resource allocation also includes the ability to replace a name

by an equivalent name or a value by an equivalent value. Sometimes one

layer is produced from another layer by a third layer. Sometimes the

description of a layer, as opposed to the layer itself, becomes the ob-

ject of communication.

The general concepts of layer communication can be related to familiar

examples. When two asynchronous processes are in the execution mode,

a value from a given process is assigned to a name (or variable) associated

with another process. Conversely, that other process assigns a value

to the name associated with the first process. When an integer is im-

plemented, a specific representation (or value) for a specific machine

is assigned to the name representing the integer. When a compiler com-

piles an HOL program, it assigns names (or registers) to values in order

13
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSET-TS 02139 (617) 661-89COC

00

Cl
0

CU

E

0.

0

CL

CD)

CLE

HIGHR ODERSOFWAR, IC. -843MASACHSETS AENUE CAMRIDE, ASSCHUETTS0219 (17)661890

to translate from one description to another. It also fulfills an im-

plementation function in that operations and data are replaced with

specific machine-dependent values. A compiler, in order to operate on

an HOL program, must be able to read the description layer of the pro-

gram as input for the translation process. In addition, it requires

further input of its own in order to provide the implementation layer

of the program. An OS system has a more complex job in that it is

usually required to communicate with both the description of a system

and the system itself. When a function is refined to a lower level of

more detailed functions, the control integrity of the values and names

from the parent layer must be maintained at the layer of the offspring.

The layer relationships are defined in HOS with the use of universal

operations, or, alternatively, with the WHERE statement in AXES.

Several observations can be made from analyzi ng Figure 1-3:

(1) some layers may be unnecessary (for example, why do we need

so many description layers in order to talk to the primitive

machine); (2) if we truly could make self-contained machine layers,

we could transfer a system from one machine to another machine at the

same level. of detail. (Thus, for example, an integer data type could be

moved from one machine to another if it were expressed simply as an

integer, I. However, once it has been further specified to be on a

particular machine, we then would describe such a data type in terms of

its next machine level, i.e., I Mahn *At ti on h nee

can only be moved from a machine to another machine with the same archi-

,tecture as I Machine V) (3) We could develop individual machines in-

dependently; (4) we should be able to define levels more abstractly

in-order to hurry the process of getting to "the bottom" of a system;

(5) we can tell from all of these various states that there is a natural

breakdown for management milestones, whereas today, many of our mile-

stones are not only not too well defined--they are not defined at all.

If we compare our methods of developing systems today with ideal methods,

the contrast is overwhelming. Let us not despair, however, for a look

into the future will help us to head in the proper direction. Ideally,

we want to be able to define, as abstractly as possible, a sys ten, first,

describe that system in a syntax we can all relate to, vrerify, that descrip-

tion, implement that system for a machine that will talk directly to

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

that system, and collect the machine mechanisms, and only those mechanisms,

that are necessary to execute a given system (Figure 5). In such a way

we can eliminate dependencies on a particular primitive machine until the

very end of a development process. For when we go from one definition

to another, from one description to another, or from one implementation

to another, we are really resource allocating to only the next machine

level. Thus, there is no need to resource allocate for more than one

given level at a time (Figure 6).

This allows us the greatest freedom in (1) developing modules independently;

(2) transferring modules from one "machine" to another "machine"; (3) making

changes to requirements in one module without changing another module;

(4) eliminating manual processes (i.e., each manual machine in Figures 1-3

represents a possible process to automate); and (5) eliminating redundant

or unnecessary steps. Most important, we have the freedom to change our

minds!

16

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

-z
4-4-E

00

E

.4-
fA4 N V7

>;,= >'
c4.,

0-

-cz

0)

OX w
< EA

(D-

c:~ cz

*1HIGHER ORDER SOFTWARE, INC. .843 MSAHETSAVENUE. CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

0 E

0C)
co X < cn0

M0) ; c n nC
Izc = I0

x x 0 (n c

*r Cl -c-
< < < x

< x a)

IE I! w I I.c
______ ___=_

I~c I IIr-

I~~C < ~ I
I (iiiI jO)

I I >q-Cf.flI

I >0cco

0 E c/ cI 0 Q C-)
cc >4 x Lc

C-i) Ca)

o - -

4-'CkLl uoi0 0 x

~a,0 C. 18

HIHRODR OTAE IC 4 ASAHSTS VNE-CABIGMSSCUET 013 80

t

5.0 THE IMPLEMENTATION OF A SYSTEM

Looking back on Apollo, hindsight shows us that we had candidates (con-

ceptually, that is) for several different machines, although we did

not view them formally as layers at that time and we did not always

correctly separate them as layers. Some machines were lower than others

in that they were closer to the primitive machine which was the AGC

itself (although the internal logic of the AGC could be viewed as still

a lower layer in the system). Guidance, for example, was a higher

machine layer than the operating system which scheduled it, but the

operating system was a higher machine layer than the AGC which scheduled

it. Other machines (two asynchronous processes communicating with each

other) were on the same level; that is, an instance of the layer of one

machine communicated with an instance of the layer of another machine

on the same level as an instance of a third layer. In such a case, we

say that two or more systems intersect at a third system. Each inter-

section is an instance with respect to a machine structure which per-

forms their communication where that machine structure is one of the

communicating systems. Thus, each system takes turns being a machine

for the other.

In the AGC, guidance, navigation, and vehicle control were examples of machine

layers which could intersect with each other on another layer. Other

less obvious communications (e.g., I/0 processing and AGC self check)

communicated only in the sense that there was an ordering relationship.

In this sense, such processes from the standpoint of a higher layer are

independent, but from a lower layer are ultimately dependent, since one

is always more important than the other. Together these layers executed

in an asynchronous environment in that a higher priority layer could inter-

rupt a lower priority layer and they could execute with their own defined

major and minor cycles. In addition, there were several other layers

(this included up to eight systems scheduled based on software priorities

up to nine systems scheduled based on software times, and up to eleven

systems scheduled based on hardware priorities, all of which had possible

asynchronous relationships for a given instance of a complete AGC system layer).

19

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

When we define a system that is to be executed, that system definition is

not complete until we define its state, the change of its state, and the
machine that will execute its change of state.

Whenever we want to separate a system from its execution, we create one

layer for the system and another layer for the machine that runs that

system. Likewise, that same machine can be looked upon as a system with

respect to the machine which executes it. This process continues until
we arrive at the layers of the primitive machine. Consider potential

resource allocation steps for System S where

STEP 1 (determine system): i.e.,

S is System

STEP 2 (determine I/O): i.e.,
S

WHERE S ON (x,x 2)

STEP 3 (determine algorithms): i.e.,

(xl,X 2)

WHERE (x1,x2) ON F

STEP 4 (determine OS): i.e.,

x2 = F(x1)

WHERE F ON Executive

STEP 5 (determine computer): i.e.,

Estaten = Executive (Estate1)

WHERE Executive ON AGC

STEP 6 (computer): i.e.,

Cstaten = AGC(Cstate1)

WHERE A on B is an AXES statement that means A executes on Nlachine B
and the execution of A represents an instance of Machine B.

20

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 01'39 • (617) 661.8900

Here we have six different layers for System S. If we want to

move F to another operating system, we change Step 4 to name a new OS for

F and replace Steps 5 and 6. If we wish to design a new algorithm for

the same computer, we change Step 3 and replace F with a new algorithm

and then replace Steps 4, 5, and 6. If we want to move to a new computer

and our operating system is independent of its computer (as it ideally

would be), we can change Step 5 to refer to another computer and we then

can replace Step 6.

j 21
HIGHER ORDER SOFTWARE, INC. * 843 MAS SACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139 .(6171 661.8900

6.0 THE SPECIFICATION OF AN IMPLEMENTATION OF A SYSTEM WITH HOS

In order to implement a system, it is desirable to adhere to the following

requirements: the users should not be aware of each other's secure data

or each other's timing; a change to one user should not unintentionally

affect the other; a change to a user should not affect the machine that

executes that user; a change to the machine should not affect the users

which will execute on that machine, and the user should not be aware of the

machine's secure data or timing.

A system defined in HOS has all the necessary information for a machine

to use in executing that system. Consider System R (Figure 7) as an

example of a system which has been defined to execute on machine OS.

If we view the HOS machine, OS, with respect to System R from the point

of view of the order in which that system is to be executed, the relevant

information of System R to the OS would be that which is shown in Fig. 8.

In System R, R is specified to invoke A and B. It is clear from the control

map that the process B must precede A since A needs B's output to execute.

Similarly, A controls C to precede D, since D needs C's output. Thus

the OS machine would assign a higher priority to B than A and a higher

priority to C than D. R, as a controller, is assigned a higher priority

than B; and A, as a controller, is assigned a higher priority than C.

Although the offspring of C do not depend on each other for inputs, C

controls G to precede F which precedes E. In addition, E is controlled

to start in AT after F*. Here G is assigned a higher priority than F

and F a higher priority than E in that they must execute in this order if

they are in the same processor, although if C were in a multiprocessor,

functions E, F, and G could run concurrently as long as there were suf-

ficient processors available. F controls I or L to be scheduled in AT1

or AT2 with respect to the time of F's invocation. In this case, only

one of the functions would be executed by OS.

EAT would be defined by an AXES STRUCTURE definition.

22

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661.8900

y R R(X)

// ""wh er e R on OS

y A A(g) g= B(x)

y D D(h)h C(g

3 E AT(9 3) h 2 F F(92) hi G(g1)

h T1 (2h2 LAT2 (2

Figure 7 . Example of an HOS System Allocated to Execute on an HOS Machine

23

HIGHER ORDER SOFTWARE, I NC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 J 617) 661.8900

R

AB B

DCC

E <FF<G G
<F

AT

IAT LAT2

Figure 8. System R as Viewed by Machine OS

24

H-IGHER ORDER SOFTWARE, IN'C. - 843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139 *(617) 661-8900

In the above example, if one wanted to change to another operating system,

we could do so by simply changing the WHERE statement (for example,

WHERE R ON OS1 or WHERE R ON HOM). A change made to an%. part of System R

does not affect System OS. Conversely, a change to System OS does not

affect System R. The scheduling of the functions in System R are completely

managed by the OS machine. Thus, ordering considerations as well as data

with respect to execution are completely invisible to the user. In

essence the control map of the userserves as all the necessary information

to the machine to carry out its execution (i.e., the order in which the

functions are to be performed can be determined by the machine receiving

as input the nodal families of a system (c.f. Appendix). The OS machine

is an AXES STRUCTURE where each instance of that STRUCTURE is analogous

to an instance of execution on the OS machine (Figure 9). In this figure

the universal operation K defines a particular constant operation
FNAME

where a value for "FNAME" is supplied by the user (c.f. Section 8.0 of this

report).

state = OS1(state

Cwhere OS on computer

state 2 = Run(nodal family,state1) nodal family = KFNMIE(statel)
/

/\
/\

/

Figure 9. An Instance of an OS Structure Definition

This example is oversimplified since it does not show the recursive

nature of this machine (c.f. Section 8.0 in this report). In addition,

in a real machine we would need a mechanism to turn the machine on or

off, provide error detection and recovery, snapshot and rollback, and
4 redundancy management.

25

C
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

7.0 ANALYSIS OF THE AGC OPERATING SYSTEM

In the AGC operating system environment, there were several diffefent

priority systems (machines) used by the users and managed by the users

with respect to interfaces between each priority system and within each

priority system.

The Executive schedules processes based on priority. A higher priority

means that if two processes are scheduled at the same time, the higher

priority process is given precedence over a lower priority process. The

Waitlist schedules processes based on time. Thus a process scheduled

for an earlier time would take precedence over one scheduled to take

place at a later time. In the AGC, a Waitlist process scheduled for

immediate processing takes precedence over an Executive process scheduled

for immediate processing, i.e., Waitlist processes could interrupt*

Executive processes, although there was an exception when the Executive

interrupt structure inhibited other interrupt structures**. The AGC

allowed an Executive scheduled process to inhibit interrupts and then

to release such an inhibit. The instructions which could execute

between an INHINT and RELINT command in the AGC are analogous to the

"critical sections" concept mentioned 'n the work of Dijkstra [10).

However, such an operating system, the earlier operating system (i.e.,

the AGC), had a mechanism which prevented deadlock (i.e., the INHINT

mechanism and RELINT mechanisms were hidden from the user).

The AGC Executive uses the starting address of a process and its priority

as input. The AGC Waitlist uses the starting address of a process and

its "time to go" as input. In order to show a complete specification

of the AGC operating system as a machine, we would need to show all components

In the AGC an interrupt was either an exchange of a temporary program
counter and an active program counter or an exchange of a program
counter from one priority structure and a program counter from another
priority structure, i.e., (PC,, PC) where "PC1" and "PC," represent
values. (See XCH operation descried in Section 8.0 of this report.)

The Executive could inhibit all interrupts except that interrupt which
overrode all other interrupt systems. This interrupt was used for emergency
situations.

26
HIGHER ORDER SOFTWARE, INC.• 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 07139 . (617) 661-8900

of the AGC operating system and their relationships to each other.

The AGC operating system, likewise, could be viewed as having machines

of its own. For example, the Waitlist is a machine and the Executive

is machine, and these machines both talk as users to the AGC itself.

We have not attempted to show here all of these interrelationships,

although it would be a very interesting exercise to do so.

In Figure 10 we show a description of an Executive system as a machine

similar to the top-level Apollo Executive system. The Executive had

several different types of scheduling functions. These included Findvac

which scheduled jobs with larger memory requirements and Novac which

scheduled smaller size jobs; Spvac was used to schedule larger jobs with

a special size address; Endofjob was used to terminate a job; Priochng

was used to change the priority of an already existing job. Jobsleep

was used to change an active job in the queue into an inactive job in

the queue. Jobwake was used to activate a sleeping job. Changejob

was used to check for a higher priority job and thus served as a de-

tector of possible interrupts.

The problem with this Executive was that the users, themselves, decided

which Executive function they needed, instead of the Executive machine.

In addition, the user, instead of the Executive machine, decided which

priority to use. In both cases, an Executive machine would be much

more qualified to determine these parameters since it has all of the in-

formation of the other users available that the user does not have.

The Waitlist system (Figure 11) had more subtle problems for the,user to

worry about. For not only did the user have to worry about coordinating

his own timing with respect to other users, but he also had to be aware

of the behavior of the Waitlist with respect to its own machines and with

respect to the interfaces between these machines.

Not only did users of Waitlist have to coordinate themselves with each

other and users of the Executive had to coordinate themselves with each

other, but these two sets of users had to also be coordinated by the users

themselves. Thus the users had to coordinate other users of the scheduling

mechanisms as well as be aware of how these various mechanisms interfaced

with each other. They, therefore, had to coordinate themselves with respect

to both synchronous and asynchronous timing aspects of their environment.

27

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

44J

t_0t

z

0

-4j

II

0 0

II C/

z rz

X U u

> >)

°~ LL o

it 0 I z it

o- .< U "

C l.

z .-

w u
F - w r

0 , -I I- Q

C

- II

< L-

8E-

0u L) U u

L , ,L.... .2 ... >.... cI.

0 00

uII

< -

C 4 ZIo z

28 E I

HIHE ODE OFWAEIC.. 843 MASCUET AVNU U CABIGMSACUET) 23 (1)6180

q WL(q in)

ZZCOJOIN

q0 IQL (q. inTaslt .)p Task. tieP K f (q. i)
un~~~ tiettie ~ i

COEITHER WHERE 1-.L ON mPC~ machine
*12

=WL2 q q0= Entertask q ,Task.)
2 IP=IQ in time jPC=Entertask

rt 0 0trn in)

WHERE Taskover 'ON PC 1machine KHERE t3Rupt ON Hardware

User

WVHERE f ton WL

q0 q0 =WL (q~~

rt=REJECT jrt REJECT

Figure 11. An Instance of the Waitlist Machine with Respect to the
Waitlist Machine Environment

29

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Consider the following Apollo scenario:

(1) User A schedules B at priority 10

(2) User A schedules C at priority 20.

(3) User A schedules D in 2 seconds.

(4) B schedules itself at priority 12 for the next cycle in 10 seconds.

(5) C schedules D at priority 21 for the next cycle in 1 second.

(6) User A was scheduled by another process at priority S.

(7) B changes the priority of C to priority 9.

(8) C puts B to sleep.

(9) A wakes B up.

From this scenario, it is first of all very difficult to know without

quite a bit of analysis if all of these schedules make sense, but in

examining them further, we see there aremany latent problems here. And,

in fact, many of them happened sometime in the development process of

Apollo. Examples**of these potential problems are:

(1) User A losescontrol due to scheduling B at a higher priority
then itself.

(2) B may not finish before another B is processed. Then we have
B conflicting with itself.

(3) B has made C be less important but this violates A's original intention.

(4) None of these users are guaranteed that all the priorities under
A's control are correctly related.

(5) A different OS function is called to schedule timed processes than
the one used to schedule priority processes.

(6) A different OS function is called for scheduling different kinds
of priority jobs.

(7) A change to one process priority could undo its originally in-

tended relationship to other processes.

(8) B, C, and D terminate without A knowing it.

(9) A is not aware of other schedules within A's system environment.

*Lower numbers indicate lower priorities.

**An exercise is up to the teader to discover other problems here.

30

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

-~- .. . " i,. .

Using HOS design, the following would have happened:

A

: WHERE A ON machine

B C D

(1) A controls the priorities of B, C, and D with respect to each other.

(2) A always has a higher priority than B, C, and D.

(3) None of these functions can control themselves.

(4) Only A can invoke B, C, and D.

(5) One machine would be used to coordinate the scheduling of all
processes in System A.

(6) The machine would maintain relative priorities and thus prc tide
for automatic reconfiguration.

We discovered more explicitly the problems of the AGC operating system

by attempting to have an HOS type user such as System R (Figure 7) inter-

face with supposedly wore than one machine (i.e., different parts of the

AGC operating system) where these different machines should have been

coordinated by only one machine with respect to the user. In Figure 12,

we show a resource allocation of System R to the AGC machine environment

as it existed at the time of Apollo.

In this case, R, A, C, D and F are scheduled on the Executive; I and L

are scheduled on the Waitlist; B and G are implicit calls; and E.is scheduled

by a hybrid (i.e., Delayjob which contains an Executive and Waitlist mechanism

to schedule a job in AT seconds).

This example does not demonstrate all the potential interface problems

since in the AGC the schedule statement also includes scheduling infor-

mation such as absolute priority. This example shows only the Waitlist

and Executive as machines and not any of the other machines which existed

in Apollo. But, it is clear that there is no mechanism in this example

to coordinate both the timing of the users with respect to each other

and the timing of the users with respect to the interfaces between the

Executive and Waitlist.

31

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-890

where A on Executive

y A~g)g =B(x)

Where C and D on Executive

y =D~h) h =C~g) !

W here E on Delayjob*
Where F on Executive

h5 = E AT(g) h2 F(g2) hI G(gl)

Where I on Waitlist
here L on Waitlist

h2 = IAT1(9 2) h2 = LAT2(9 2)

Example 12. Resource Allocation of Machines to one Implementation
Layer of AGC -Operating System

*Delayjob contains an Executive and a Waitlist
mechansim to schedule a job in LT seconds

32

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-.8900

8.0 AXES SPECIFICATION TECHNIQUES

AXES is a formal notation for writing definitions of systems. These sys-

tems include systems which are mechanisms for defining other systems.

Thus, for example, we could define a set of specification "macros" which

collectively could form a language for defining a system or family of

systems. Since each language statement would be a definition "macro"

based on an integrated HOS control hierarchy, the resource allocation

to a particular machine could then be addressed independently from the

definition of the system. Although it is not a programming language,

AXES is a complete and well-defined language capable of being analyzed

by a computer. AXES is intended to provide commonality between systems.

Although users will have flexibility to choose different building blocks,

these building blocks, when "compiled," will be brought to a common

meeting ground with all other users of AXES.

The syntax of AXES U1 provides the mechanisms to specify control struc-

tures and data types. The purpose of AXES is to be able to express a

system specification which is equivalent to that same specification ex-

pressed graphically as an HOS control map ,. Control structures have

three forms in AXES: structures,'operations, and functions. Whereas a

structure is a relation on a set of mappings, i.e., a set of tuples whose

members are sets of ordered pairs, an operation is a set of mappings which

stand in a particular relation. An operation results, mathematically,

from taking particular mappings as the arguments (nodes) of a structure.

By a function, we mean a set of mappings which stand in a particular rela-

tion for whih particular variables have been chosen to represent their

inputs and outputs. Whereas structures and operations can be described

as purely mathematical constructs, a function is a hybrid, consisting
of a mathematical construct and a linguistic construct, i.e., an assign-

ment of particular names of inputs and outputs. Note that our use of

"function" is slightly different from what is meant by "function" in

mathematics. For the latter notion we use the term "mapping" throughout

this paper.

In AXES, a new data type can be defined si-ply in terms of the operations

that are to be performed on the data a.. The primitive operations are

not defined in terms of other operations, ?ut in terms of each other.

33

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 •(617) 661-8900

That is, a data type is defined algebraically rather than operationally

by making true Statements (or axioms) about the equality of two control

structures in which all the nodes are operations. Each such control

structure is defined in terms of primitive operations of the data type

of interest or of previously characterized primitive operations of another

data type (previously characterized primitive operations include universal

primitive operations that have been defined, each of which is associated

with any member of any data type).

The axioms associated with the definition of a data type are only those

we need to characterize the data type. There are, of course, other

operations that we find useful for other purposes. We are free to define

any operation we want on an already-defined type as long as the operation

definition is consistent with the axioms of the type. A new operation

can be characterized either as an OPERATION or as a DERIVED OPERATION.

In AXES, we specify the behavior of an operation without specifying

its decomposition by writing it as a derived operation, i.e., by means

of true statements that describe the behavior of the operation with

respect to other already-defined operations. Either kind of operation

could be written as a control map, if desired. They differ in how they

are specified, not in what they are. What distinguishes both of these

kinds of operations from primitive operations on their data type is that

their existence is provable mathematically from the existence of the

primitive operations and the axioms of the type. In fact, if an OPERA-

TION (which defines a function) and a derived operation (which defines the

behavior) are both used to define the same function, the behavioral pro-

perties can be checked against the refinement properties to prove the

correctness of a definition.

In describing AXES we will use variables and constants themselves to

make statements about the values they name, and we will use the names

of variables and constants to make statements about the variables and

constants themselves.

34

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

To differentiate an object from its name, we introduced the "use-mention

distinction" [171 in AXES R. That is, we can talk about an object

only by using a name of the object. (To talk about a man, for example,

we have to use a sentence that contains the man's name, not the man

himself.) The notation conventionally used for this is enclosure within

quotation marks. To form the name of a given name (or written symbol

of any kind), we include that name (or symbol) in quotation marks.

(Successive embedding of quotation marks can be used if we want to talk

about names, names of names, and names of names of names.)

In AXES, a constant symbol is the name of a particular value and cor-

responds to a proper noun like "John." A variable is the name of more

than one possible value and corresponds to a common noun like "a man."

For example, in Figure 13, the top-most box is a description of part of

AXES itself. The top-most box describes the AXES objects required to

define a STRUCTURE in AXES. The sentence

"STRUCTURE:" y I'-" S '(" x ")";

makes a statement about values by using the variable "y", "s", and "x"

and about constant symbols by using the quotation-marked symbols such as

"'STRUCTURE"', and "'='"

The middle box encloses an AXES object itself; that is, the middle box

encloses the definition of a language statement derived from the defini-

tion of an AXES module. The Composition (Cn) STRUCTURE, defined in

Figure 13, is one of the three HOS primitive control structures. Each

primitive control structure has been defined as a STRUCTURE with AXES L*.

The middle box encloses an instance of the layer that the top-most box
*The syntax for set partition is

2v, fl1 x) OTHERWISE 2y = f(2x);

WHERE PARTITION OF (x,y) IS ANY PARTITION;

Here, the left superscript indicates a member of a member of a partition of
"x". The syntax for class partition is

= fl(Xl) INCLUDE =

35

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661.8900
I

"STRUCTURE:" y "=" S "("x");"
declaration...
definition...

"SYNTAX:" user-defined syntax "" description
"END" S

STRUCTURE: y = Cn(x);
WHERE x,y,g ARE OF SOME TYPES;

y Cni(g) AND g = Cn2(x);
SYNTAX: y = Cnl(g) JOIN g Cn2(x); a STRUCTURE
END Cn; object

OPERATION: b Contact (a,c);
WHERE a,b,c,d, are ACSs;

b = relate (d) JOIN
d = Supervisor (a,c); a n object

END Contact;

Figure 13

An Example of Abstract-Control-Structure Definition
Layers with Respect to AXES

36

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890,

represents. If we could describe all of the structures that could possibly

exist, then the complete set of structures would be the layer that the

top-most box describes.

When a STRUCTURE in AXES is defined, the designer supplies the syntax (or

description) so that a user of that structure can describe particular

mappings that stand in the relation. For example, the bottom-most box

in Figure 13 encloses an AXES object that is an instance of the Cn struc-

ture described in the middle box of Figure 13; that is, the bottom-most

box is the definition of a system derived from the definition of a

language statement, derived from the definition of an AXES module.

In the bottom-most box, 1"b = Relate(d)" describes a particular function

that "y = Cn 1(g)" represents in the middle box. Likewise, "d = Super-

visor(a,c)" represents an instance of "g = Cn2(x)". In the middle box,

the objects that "y", "g" and "x" represent are described in the state-

ment

WHERE x,y,g ARE OF SOME TYPES;

This statement means that x,y, and g are variables whose values are of

an unspecified data type. In the bottom-most box the WHERE statement

is used to specify a particular data type, and the operation, Contact,

is a particular mapping.

Other control structures can be derived from already defined control

structures and operations that operate on variables of any type. Opera-

tions that operate on variables of any type are called universal opera-

tions. Primitive universal operations are defined as.

(1) x = Clone1 (x)

(2) (x,x) = Clone2 (x)

(3) CON KCON(x)

2
(4) xI = id 1 (xlx 2)

2(5) x2 = id 2 (Xl,X 2)

(6) (x1,x2) - St(x)

(7) x = T(Xlx 2)

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

* ~* 1

(1) and (2) are used to specify more than one variable with the same value.

(3) is used to choose a constant symbol. (4) and (5) are used to select

the value of one of a set of variables. (6) and (7) are related by

T(St(x)) = x. These are used to create a value of a data structure from

a value of a data type (i.e., St) or to create a value of a data type

from a value of data structure (i.e., T).

Universal operations have as their bottom nodes, universal primitive

operations. The universal operations

y = idb (x)
a

Y1,Y2 = XCH(x1 ,x2)

y = Clone (x)
n

are defined here because they are then used to define control structures

whose syntax is used to define the operating system functions in Section IV.

Universal operations are defined as STRUCTURES in AXES because they operate

on variables rather than values. The first non-primitive universal opera-

tion defined here, y = id (x), is used to select particular variables
a

out of a set of variables.

STRUCTURE: y = I(x)

WHERE c,a,e,e ARE SETS (OF NATURALS);
1

WHERE b,d,j,p,m,a ,a ARE NATURALS;
21 11

WHERE x,x,x,x,x,x,x,x,x,y,g,z,h ARE OF SOME TYPE;

12345678

WHERE (al,a 2) REPLACES a;

WHERE y REPLACES (yly2);

IERE (el,e 2) REPLACES e;

y = 11 (x,x,a) JOIN (x,x,a) = 2(x);
14 14

(x,x,a) = 1 (x,x) JOIN (x,x) = Clone2 (x);
14 223 23

38

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

a = Il (x) INCLUDE (x,x) = Clone 2 (x);
12 1 4 3
2

a = I1 (e,b) JOIN (e,b) 2 (c,d)(X);
12 2

a = I1 (e,b,b) JOIN b,b = Clone 2(b) INCLUDE e = Clonel(e);
1 112 12 21

a I (e1 ,b) INCLUDE a2 = 12 (e2,b);1 1 11 1 12
112 112

a, = K (el,b) EITHER a = id2 2(eb);
1REJECT1 1 11

PARTITION OF (el,b) IS
1

(el,b)[a>b,
1

2

PARTITION OF (e1 ,b) IS

1(e 2 b) [2 REJECT,

2(e12b)j I 2 REJECT;

1 11

Yl = I Ill (1
al) INCLUDE Y2 = 121(x' a 2) "

2 12

Y2 = id2 (4,ab2 EITHER Y2 = 122(xa2) ;

41 1

39

H2

HIGER RDE SOTWAE2 ,) IN. REJEASCT ET VNE.CMRDE ASAHSTS019.(1)6180

1.. .1

PARTITION OF (x,a2) IS
4

(x,a2) Ia2 = REJECT,
4

(x,a2) Ia2 # REJECT;
4

Y2 = ll(xxa 2) JOIN x,x = Clone2
(x) INCLUDE a = Clonel(a2);

7 a8 1 7 8 1 1 1

Yl = I 1 (x,a1). EITHER Y 2 2 (xa 1 EITHER KREJECT 1
11 11 L

PARTITION OF (x,a1) IS

1(x,al) lal -1
1

2(x,al) a1 > 2,

3(x,a 1)1a1 = 0;

1

Y, (g) JOIN g = id1 (x,a1);

Yl = id (g'g 2) JOIN (g1,g2) = St(g);

2
Yl = Il (zj) JOIN z,j = 12 (x,al);

12 1111111

(z,j)= II (x,a1,x6 ,a2) JOIN(xs,alx 6,a-- Clone2 (x,al);

2211 5 11

j (x,a1) INCLUDE z= 12 (x,a1);

12 2 1 12 6 2

j = p-m JOINm = K1 (x) INCLUDE p = Clone1 (a,)
S

JOIN a=id 2 (x,a1)
2 5 1

40

HIGHER ORDER SOFTWARE, INC.. 8 43 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661 -890(i

.2 2
-id 2 (h JOIN (h1 p,) =St(h) JOIN h =id 1 (x,a1)

6 2

d
SYNTAX: y = id (x);

END I;

In the use of this structure, a value for (c,d) defines a particular KCON

operation which, in turn, is used to define the number of components of

"y", each component having the same value as the particular component of

"x". For example, an instance of this structure is defined by replacing

the value of "c" by a set of integers, the value of "d" by an integer,

the value of "x" by a variable or set of variables, and the value of

"y" by a variable or set of variables. An instance of this structure

might look like (e,j) = id 2,4) (g,h,i,j,k). In this instance we havemigh4)

replaced '"c"' by "(2,4)" and I'd" by "5", which defines (e,b) = K((2,4),S)

so that "e" has the value "(2,4)" and "b" has the value "5". Here,
"y" would have the value "(l,j)" and "x" has the value "(g,h,ij,k)".

Note also that the definition is constrained so that each value of each

component of "c" must be less than the value of "d" to assure that the choice

of values falls in the range of the number of variables available to choose

from. This is accomplished by specifying a particular component of "a"

to have the value REJECT if the value of that particular component is

greater than the value of "d". REJECT is a value which is a member of

every data type in AXES. Its purpose is to be able to specify error

conditions and to be able to recover from these errors within the specifi-

cation of a system.

Although the definition of y = idd(x) is quite complex (because we must

use here only primitive universal operations and primitive control struc-

tures) once defined it can be used to define other structures. In what

follows, the use of this structure is shown to simplify the definition of

other structures.

We can now define a structure whose syntax can be used to define more than

one system having access to the same value. Here, we use te universal

operation

y = ida (x)

41

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

as well as the universal primitive operation

(x,x) = Clone 2 (x)

to determine the meaning of the relationship among the unspecified func-

tions that appear as bottom nodes of the structure definition.

STRUCTURE: y = J(x);

1HERE y,g,w,h ARE OF SOME TYPE;

WHERE b IS A NATURAL;

WHERE a IS A SET (OF NATURALS);

y = J1 (g,w) JOIN (g,w) = J2(x);

(g,w) = J (x,x) JOIN (x,x) = Clone (x);
212 12

g = J1 (x) INCLUDE w = id (x);
12 1 2

b
g = Jl (h) JOIN h = id (x);

112 C 1

SYNTAX: y = Jl(g,w) COJOIN g = J. (I);
112

END J;

In using the syntax of a structure, an instance of the layer of the

structure definition can be obtained. In the COJOIN structure, there

are actually four unspecified mappings besides the top node: Jl' J I 1

ib bif
id a, idc . But in the use of the COJOIN, the value of "w" and "x" uniquely

bb
determines the particular idu function. Likewise, the value of "h"an x

uniquely determines the particular idbc . Thus, only Jl' J1 need appear
c ~1'

1

in the syntax of the COJOIN definition. The collective set of values

that replaces the variables described in the syntax can be traced to each

node of the structure definition. For example, if

42

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

(a,b) = F(r,t,s,

is defined as

(a,b) = A(p,q,r) COJOIN (p,q) = B(r,t)

The first and second statement collectively forn an instance of the

COJOIN structure, as described in Figure 14. The arrows represent the

values of the variables of the COJOIN definition.

In this example, "x" has the value "(r,t,s)"

"J" has the value "A"

"y" has the value "(a,b)"

"g' has the value (p,q)"

"w" has the value "pr"

'' has the value "B"

12

and, since the input to F has three components, "b" in the structure

definition has the value "3", since "w" has the value "r", which has one

component, "a" in the structure definition has the value "1", and so on.

The structure syntax names the objects necessary so that an instance of

the structure definition is obtained. Any instance of a structure must

itself be an HOS system.

In the COJOIN structure, systems that communicate with each other can

access the same value. Likewise, we define other structures, one so

that independent subfunctions can access the same value (the COINCLUDE),

and one so that subfunctions whose invocation depends on the value of the

controller's input set need not access the entire set of variables of the

input set (the COEITHER).

STRUCTURE: yl,y 2 = COIN(x);

IVHERE b IS A NATURAL;

WHERE a,c ARE SETS (OF NATURALS);

4 3

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

(a, b) F (r ,t,s)

(a,b)

y I 9,W)(g,w) 2 J(x)

A (p,q) rrtsrts

=gw J1 (x)x wx~ Cln 2(x)

a
2 ~r 2

(p,q)3

g =J~ (h) h db(x) (r~t,s)
9~ c

B 2 1r1t)

Figure 14

An Instance of the COJOIN Structure

44

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

WHERE x,y,g,h ARE OF SOME TYPE;

(ylY 2) = COINI(x,x) JOIN (x,x) = Clone2 (x);1 2 1 2-

Yl = COINII (x) INCLUDE y2 = COIN 2(x);

= COIN 1 (g) JOIN g idb

1 W1
11

= COIN 1 (h) JOIN h = id b(x);

Y2 c1 2

SYNTAX: yl = COIN 1 (g) COINCLUDE y = COIN 1 (h);
1 1

END COIN;

STRUCTURE: y = E(x);

WHERE x,y,h,g ARE OF SOME TYPE;

WHERE b IS A NATURAL;

WHERE c,a ARE SETS (OF NATURALS);

1 2y E E(x) OTHERWISE y E 2 (x);

PARTITION OF x IS ANY PARTITION;

y = El (g) JOIN g = idb (x);
1 a

y = E1 (h) JOIN h = idb(2x);
2C

SYNTAX: y = E1 (g) COEITHER y = E1 (h);

END E;

Structures, in additon to the primitive HOS structures (e.g., COJOIN),

can be used to define other structures. For example, the WHEREBY, defined

with the COJOIN, gives us the facility to use constant symbols as operands

of a function.

45

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

STRUCTURE: y =W(x);

IIERE y,h,g,x ARE OF SOME TYPE;

WHERE a IS A SET (OF NATURALS);

WHERE b IS A NATURAL;

y = W1 (h,g) COJOIN h = idb (x) COJOIN g = KCON(x);
1

SYNTAX: WHEREBY y = WI (h,CON);

END W;

The WHEREBY is used as in

y = X+l

Here, the constant symbol "I" defines the particular KCON operation that

makes the instance of the WHEREBY structure a function. Note also that

the operator "+" is used as an infix operator. In AXES we are free to

use either prefix or infix notation, as desired.

Another example of a non-primitive structure, XCH, gives the capability

to exchange the input values of a function.

STRUCTURE: 1(y ,y 2)= XCH(xlx2);

WHERE yl,Y2,xl,x2 ARE OF SOME TYPE;
22

Y id 2 (Xl'x 2) COINCLUDE = id2(Xl'x2;

SYNTAX: (yly 2)= XCH(xlx 2)

END XCH;

Often, in a system specification, more than two values of the same variable

are desired. For this case, we define the universal operation y = Clonen (x):

46

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661.8900

STRUCTURE: y = C(x);

WHERE (yl,y2) REPLACE y;

WHERE x,y,g,h ARE OF SOME TYPE;

WHERE m,n,p ARE NATURALS;

y = C1 (x,m) COJOIN m = K n(x);

V1 2 3y = C (xm) EITHER C2 (x,m) EITHER y = KREJECT (x,m);
1 121 RJC

PARTITION OF (x1 ,m) IS

(x,m) m = 1

2(Cxm m> 1

*(xm)Im : 0

y : Clone1 (g) JOIN g id I (xm);

2 2yl =Clone,(x) COINCLUDE Y2 = C2 (xm);
21

Y2 = C1 (xp) COJOIN WHEREBY p : m-1;

SYNTAX: y = Clone (x);
n

END C;

In this statement, the only unspecified function (other than the top

node) is m = Kn (x). When this structure is used, a value for "n" defines K

a particular K operation which, in turn, is used to define the number ofn
components of "y", each component having the same value of "x".

We can visualize the instance of a structure as being either written

down on a piece 6f paper, by a human being, or to a register by a soft-

ware or hardware process. .To check an instance in an HOS system, the

use of a STRUCTURE is compared with the STRUCTURE definition itself, by

an analyzer. All instances of a STRUCTURE can be viewed as being sup-

plied to the structure dynamically. The STRUCTURE for an asynchronous

machine system, such as an OS or the Higher Order Machine (HOM), de-

scribed in Section V, is a recursive relation relating each state of a

47

HIGHER ORDER. SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

machine to a previous state of the same machine within an instance of

a machine system. To check the instances of an asynchronous machine in

a real-time environment, an analyzer is used to not only check the use

of the STRUCTURE with the STRUCTURE definition, itself, but also t9

check to see that all the users of that STRUCTURE are consistent.

STRUCTURE: y = HOM(x);

WHERE B,A ARE NODAL FAMILIES;

WHERE HOM1 IS A CONSTANT FUNCTION;
22,

WHERE KA IS A FUNCTION;

WHERE x,z,y ARE OF SOME TYPE;

y = HOM1 l(x) OTHERWISE y = HOM 2 (x);

PARTITION OF (x,y) IS

1(x,y) lx =REJECT,

1 (x,y)Ix REJECT;

y = HOM(z) JOIN z = HOM2 (2 x);
2

z = HOM (x,B) COJOIN B = KA(X);122 :

SYNTAX: WHERE A ON HOM;

We indicate the potential happening of each machine instance by specifying

a user system to be "ON" the machine system, e.g., the syntax WHERE A ON

HON specifies the initial nodal family of system A to be used by the

first machine instance and the nodal family for each next recursive

instance of the HOM function K A to be determined by the ordering relation-

ships of the nodal families within system A. A nodal family is a 3-tuple

whose members are functions which stand in a particular relation (c.f.

Appendix). By indicating only "HOM" in the syntax of this structure,

rather than, for example, "y = HOM(x)," the state of the HOM remains
hidden from the user.

48

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 ((617) 661-8900

(. 9.0 SUMMARY

With respect to the requirements for an operating system, stated earlier

in this report, the AGC operating system fulfills some of these require-

ments (e.g., its data is hidden), but does not fulfill others (e.g.,

timing is not hidden).

When we began this effort, we thought there was little in the AGC operating

system we could improve upon. This attitude was as a result of comparing

the AGC with other operating systems, the simplicity of the algorithms

in the AGC operating system and the fact that no errors occurred in several

years of development in the actual operating system itself. Upon looking

back, however, we can now see that many of the development errors which

occurred in the user's environment would not have occurred if the AGC

operating system had the additional advantages which we discussed above.

49

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (1617) 661-8900

Appendix

A FORMAL OUTLINE OF HOS

In HOS, the decomposition process for a system results in a tree structure.

At the start of the decomposition process, the entire system is repre-

sented by the root of the tree which hopefully, represents the require-

ments for the system. This definition, however, has many implicit

(hidden) requirements. In order to arrive explicitly at the complete

definition of the system, the root is decomposed by replacing it with a

nodal family (a particular parent node and all of its offspring), which

represents the decomposition of the root. This decomposition process,

that of replacing a function by its nodal family, can be continued until

the entire system has been specified. The resulting tree represents the

complete system specification where the leaves represent primitive opera-

tions on the data types represented by the variables at those leaves.

It may turn out that during the decomposition process a requirement is

.shown to be erroneous or missing. In such a case, an iteration of the

system description is required.

The parent node of the nodal family controls its offspring. When refer-

ring to this control relationship, the parent node will be called a

module, and its offspring will be called functions. The offspring of the

nodal family are the functions required to perform the module's corres-

ponding function (MCF)(i.e., the function that the nodal family replaces).

In the sections that follow, the variable that represents the domain

elements of a function is referred to as the input variable, and the

variable that represents the range elements of a function is referred to

as the output variable. Individual domain and range elements may be

called inputs and outputs, respectively.

A module, in performing its corresponding function (FigureA -1), is

responsible for determining if the inputs received are in the intended

domain of the MCF. If an input is not in the intended domain of the

MCF, it is in the unintended domain of the NICF and maps to a special

value which is a value of every data tYpe, the value REJECT.

51 1

HIGHER ORDkR SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

DOMAIN OF MUF

2 6wS

DOMAIN OF

5 MI

RANGE OF MC 0DOMAIN OF MCF

Figure A -1. illustration of a Function from X into Y

52

In a sense, the improper input element is not in the domain of the module's

corresponding intended function (MIF), but is in the domain of the MCF,

i.e., the module's corresponding unintended function (MUF).

Properties of the Primitive Control Structures

While a function can be decomposed in many ways, the HOS axioms [2 provide

rules for the construction of nodal families (i.e., the decomposition

of a function). From these axioms, three primitive control structures

are derived which are used for functional decomposition 11.

These control structures are: composition, set partition, and class

partition.

Y f3(z) z = f2(x)

Figure A -2. An Example of Composition

Y~f3(X1 X

y = X x I y 0= f:(x I)IX<0

Figure A -3. An Example of Set Partition

53

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661.8900

Composition is illustrated in Figure A -2. In order to perform f1 (x),

the function f must first be applied to x which results in output z.

z then becomes an input to f3 which produces the desired range element

of the overall function fl"

It is important to observe the following characteristics of composition

(characteristics are explained with respect to the example in Figure A -2):

(1) One and only offspring (specifically f2 in this example)

receives access rights to the input data, x, from module f1

(2) One and only one offspring (specifically f3 in this example)

has access rights to deliver the output data, y, for module f1

(3) All other input and output data that will be produced by off-

spring controlled by f1 will reside in local variables (specifi-

cally"z"in this example). Local variable,"z'; provides communi-

cation between the offspring f and f3
2 3

(4) Every offspring is specified to be invoked once and only once

in each process of performing its parent's MCF

(5) Every local variable must exist both as an input variable

for one and only one function and as an output variable for

one and only one different function on the same level.

Set partition, which involves partitioning of the domain, is illustrated

in Figure A -3. In the example, the set which comprises the domain is

partitioned*into two subsets. For set partition, only one of the offspring

will be invoked for each performance of the MCF at f1 (the determination

being based on the value of'Y"received) and that offspring will produce

the required range element for its parent module when it is performing.

The following characteristics with respect to set partition should be

observed:

*Partitioning implies the subdivision of the original set into non-

overlapping (i.e., mutually exclusive) subsets.

54

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

(1) Every offspring of the module at is granted permission to

produce output values of "y"

(2) All offspring of the module at fl are granted permission to

receive input values from the variable "x"

(3) Only one offspring is specified to be invoked per input value

received for each process of performing its parent's MCF

(4) The values represented by the input variables of an offspring's

function comprise a proper subset of the domain of the function

of the parent module

(5) There is no communication between offspring

Class partition is illustrated in Figure A -4. While set partition in-

volves partition of the domain into subsets, class partition involves

partition of the domain variables into classes and the partition of the

range variables into classes. In the example, it is assumed that the

domain variable has an associated data structure comprised of two parts,

',xi'and "x"'. Likewise, the range variable has an associated data structure

with the same number of classes as the domain's data structure.

(y,, Y2) f(xI, x2)

= h(x1) '2 = g(x 2)

Figure A -4. An Example of Class Partition

HMS
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSET S 02139 •(617) 661-8900L

The following characteristics with respect to class partition should be

observed:

(1) All offspring of the module at f are granted permission to

receive input values taken from a partitioned variable in the

set of the parent MCF domain variables, such that each off-

spring's set of input variables are non-overlapping and all

the offspring input variables collectively represent only

its parent's MCF input variables

(2) All offspring of the module at f are granted permission to

produce output values for a partitioned variable in the set of

the parent MCF range variables, such that each offspring's

set of output variables is non-overlapping and all the off-

spring's set of output variables collectively represent the

parent MCF variables

(3) Each offspring is specified to be invoked per input value

received for each process of performing its parent's MCF

(4) There is no communication between offspring.

56

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

REFERENCES

[1] Hoare, C.A.R. "Operating Systems: Their Purpose, Objectives,
Functions and Scope", Operating Systems Techniques, ed. by
C.A.R. Hoare and R.H. Perrott. Academic Press, 1972.

[2] Punj, D., et al. "A Survey of Navy Tactical Computer Applica-
tions and Executives." Center for Information Systems Research
Report-19, Oct. 1975.

[3] Newman, B., et al. "A Representative Design for a Real-Time
Tactical Executive." CENTACS Report No. S7, U.S. Army Elect-
ronics Command, Sept. 1975.

[4] Hamilton, M. and Zeldin, S. "The Manager as an Abstract Systems
Engineer." Technical Report #5. Higher Order Software, Inc.,
Cambridge, MA, June 1977. (To be presented at the COMPCON
77 Fall Conference, conducted by the IEEE Computer Society,
Washington D.C., Sept. 1977.)

[5] Lickly, D.J., et al. "HAL/S Language Specification." Inter-
metrics Inc., Cambridge, MA.

[6] Muntz, C. Users Guide to the Block ii AGC/LGC Interpreter.
Draper Laboratory/MIT Doc. R-489, April 1965.

[7] Hamilton, M. I"AGC Program Sundisk." Display Interface Rev. 267,
NASA 2021108-011, Draper Laboratory, Cambridge, MA, Nov. 1967.

[8] Lickly, D. "AGC Program Sundisk." Restarts Rev. 267, NASA
2021108-011, Draper Laboratory, Cambridge, MA, Nov. 1967.

[9] Hamilton, M. "Management of Apollo Programming and Its Applica-
tion to the Shuttle." Software Shuttle Memo No. 29. Draper
Laboratory, Cambridge, MA, May 1971.

[10] Dijkstra, E.W. "The Structure of the 'THE' Multi-Programming
System". CACM 11, 5, May 1968.

[11] Robinson, L.,et al. "A Formal Methodology for the Design of
Operating System Software." Computer Science'Group, Stanford
Research Institute, Menlo Park, CA, Sept. 1975.

[12] Hamilton, M. and Zeldin, S. "Higher Order Software--A Methodology
for Defining Software." IEEE Transactions on Software Engineering,
Vol. SE-2, No. 1, March 1976.

[13] "Apollo Guidance Program Symbolic Listing Information for Block 2".
Revision 1, NAS 9-4810, 27 June 1968.

[14] Van Nostrand, A.D., et al. Functional Writing. Center for
Research in Writing, Providence R.I., 1976.

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

[15] Hamilton, M. and Zeldin, S. "AXES Syntax Description." Technical
Report #4. Higher Order Software, Inc., Cambridge, MA, Dec. 1976.

[16] Hamilton, M. and Zeldin, S. "The Foundations for AXES: A pecifi-
cation Language Based on Completeness of Control." Doc. R-964.
Draper Laboratory, Cambridge, MA, March 1976.

[17] Searle, J.R. "Review of J.M. Sadock, Toward a Linguistic Theory
of Speech Acts." Language 52, 1976.

58

HIGHER ORDER SOFTWARE, tNC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

,.I

Section II

THE SOFTWARE SECURITY PROBLEM AND HOW TO SOLVE IT

by

S. Cushing

TABLE OF CONTENTS

Section Page

l. SECURITY AND RELIABILITY 1

2. THE SECURITY PROBLEM 5

3. SPECIFICATION, IMPLEMENTATION, AND LEVELS
OF ABSTRACTION 17

4. HOS AS A GENERAL SYSTEMS THEORY 31

5. HIGHER ORDER SOFTWARE IS SECURE SOFTWARE 51

6. SOFTWARE, SYSTEMS, SEMANTICS, AND BEYOND... 63

REFERENCES 69

FIGURES

1. A Protection Matrix 6

2. Simple Domain Switch 9

3a. Protection Matrix before Call to Editor 11

3b. Protection Matrix during Call to Editor 11

4. Walter's "Tree Structured Directory Model - MI" 18-19

5. SRI Model of Program P to Run on Machine M 21

6. Robinson's Register Module Specification 23

7. Parnas' Stack Module 29

8. HOS/AXES Data Type Stack 35

9. HOS Specification of Data Type REPOSITORY 37

10. HOS Specification of Data Type AGENT 38

11. HOS Tree for Function y = a+b 42c-d

12. The Axioms of HOS 43

13. The Three Primitive Control Structures of HOS 44

14. HOS Decomposition of Function f in terms of
Primitive Operations of Data Type D0 48

15. Retroflexed Step Structure of HOS Data Levels 54

16. HOS Decomposition of Function f with Three Data
Levels 56

17. De-Retroflexed HOS Decomposition of Function f 57

18. Wilson's Semantic Model 65

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

THE SOFTWARE SECURITY PROBLEM AND HOW TO SOLVE IT

So if a man's wit be wan~dering,
let him study the mathematics

-Francis Bacon

1. SECURITY AND RELIABILITY

When digital 'computers first began being used in the 1950's,

people just programmned their computers in machine or assembly

language and ran their programs. With the introduction of

higher-order languages, however, and particularly with the

development of large and very large software systems, such as

those of the Apollo project, for example, a whole new set of

questions and problems arose that the early programmers could

never have imagined. How can we prevent timing conflicts?

How can we prevent data conflicts? How can we prove programs

correct? What is the relation between synchronous and asynch-

ronous processing? How can we make an operating system secure?

All of these questions and others constitute what Parnas [Par72a]

has termed "the so-called 'software engineering' problem"

(p. 330).

one of the most interesting instances of this software-engineering
problem is that of guaranteeing systemr security. How can access

to the various components of a system be restricted specifically to

those for whom it is intended? Linden [Lind76) points out that

there are many similarities between the requirements of security

and the requirements of reliability, suggesting that "a tech-

nical breakthrough on both the security and software reliability p
problems appears to be as feasible as a breakthrough on the

security problem alone" (p. 410). Guaranteeing security re-

quires that "operating systems must be structured so that inter-

actions between system- modules are more clearly defined and more

closely controlled" (p. 411) , but "this same control over the

interaction of modules is also needed for reliability."

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

Similarly, "the protection mechanisms needed for security can

also be used to enforce software modularity," and "such modularity

would improve the reliability and correctness of software."

In a word, "there is enough overlap between the requirements

for security and the requirements for high system availability

that it is reasonable to attempt to solve both problems at the

same time." (Availability is a necessary part of reliability,

for Linden.)

In this report we will argue that Linden is correct, by showing

that software specified according to the Higher Order Software

(HaS) methodology of Hamilton and Zeldin [Ham76a,b,77] is auto-

matically secure. HOS was developed as a means of guaranteeing

system reliability, without any concern for the security problem

per se. Systems specified in HOS are guaranteed against ever

having timing or data conflicts (Hain76b] . The fact that they also

turn out to be secure makes HOS exactly the kind of common break-

through that Linden suggests is feasible.

HOS manages to solve these two problems by showing that they

need not arise in the first place. If software is specified

according to the principles of HOS, then there is no need to*

ask how to prevent data or timing conflicts, because there simply

will be no such thing. Similarly, ignoring history for the

moment, if software had always been specified according to HOS,

then it would never have occurred to anyone to ask how to make

a software system secure, because it simply would have been

secure already. Demonstrating this latter point is the purpose

of our present paper.

Many people have recognized that the key to solving these problems

is to make a clean separation between the specification of a

system and its implementation, and, as we will see, HOS is a

systems theory that really manages to do this successfully.

We will see that trying to solve the reliability, security,

and related problems entirely in terms of implementation is like

trying to get to the moon on a skateboard. Some system~s theories

2

HIGHER ORD ER SOFTWARE, iNC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

enable us toget off the ground, but then we are stranded for-

ever in the orbit of implementation. HOS enables us, finally,

to achieve escape velocity, break free of this orbit, and reach

whatever destination we have decided on.

I

$3

SMM

2. THE SECURITY PROBLEM

Linden [Lind76] presents a general abstract characterization of

system security in terms of what he calls a protection model.

Such a model "views the computer as a set of active entities

called subjects and a set of passive entities called objects.

The protection model defines the access rights of each subject

to each object" (p. 415).

Linden represents a protection model in the form of a protection

matrix, such as the one in Figure 1 [Lind76, p.416]. The rows of

a protection matrix are associated with the subjects of the

model and its columns are associated with the objects. "For

each subject/object pair, the corresponding entry in the matrix

defines the set of access rights that the subject has to the

object." For the protection model represented by the protection

matrix in Figure 1, for example, we see that subject C may

read or execute object X, because both "READ" and "EXECUTE" appear

in the matrix slot that occurs at the intersection of row C

and column X.

Changes to the protection matrix itself are also controlled

by the access rights represented in the matrix; "for example,

a subject with 'delete' access to an object can eliminate that

object frcm the protection matrix." Subjects can be allowed to

have access rights to each other by having subjects appear

also as objects in the protection matrix. "For example, one H
subject may be allowed to transfer control to another subject

by using an 'enter' access right to the other subject."

Linden also introduces the notion of a protection environment,

which includes "everything that a subject might cause to be done

on its behalf by another subject," as well as everything the

subject is allowed to do directly. "A protection domain is

a more restricted concept and includes only access rights to I
objects that are accessible by the subject." The rows of the

HIGHER ORDER SOFTWARE, INC.* 843 MASSACHUSHI1S AVENUE .CAMUKIX L, NIA!IALHUbLI ISUfIiU W 19 bbI-8UU

'.0~

0 4.0

'4J

0

-~4

6

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

protection matrix represent the protection domains of the pro-

tection model.

The key to Linden's approach to system security is the notion

of small protection domains. Linden uses the term "small pro-

tection domains" as "a qualitative description of a certain

class of protection models. The word 'small' is not intended

in a rigid quantitative sense" (p. 416). A small protection

domain, for Linden, is the minimal protection domain that will

still allow its subject access to everything it has to access.

A protection domain may be very large in a quantitative sense,

but it is a "small" protection domain if it could not be decreased

in size without overly restricting the access rights of its

subject. Linden calls this the "principle of least privilege."

Since "a large program usually needs access to many objects,"

it follows that"protection domains can be kept small only if

a large program executes in many different protection domains

and constantly switches between these protection domains during

its execution." Protection domains can be kept small, "if

small subunits of a program execute in their own protection

domains," because "a small subunit of a program typically only

needs access to a small number of objects." It follows that

"the flexibility, ease, and efficiency of domain switching

is the primary factor in determining whether protection domains

can be kept small and closely tailored to actual needs."

Linden integrates protection domain switching with the calling

of a procedure. This permits each procedure to have its own

protection domain, even though a domain switch might not be

involved in every procedure. A protected procedure, for Linden,

is a procedure that does involve a domain switch.

If a procedure is a protected procedure, then it will have a

particular protection domain associated with it. "Thus the

7

HIHRORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

right to access certain objects may be available during the

execution of that procedure--and possibly only during executions

of that procedure." Each execution of a protected procedure

will possess the access rights of the procedure, whatever the

calling environment may be. The procedure itself, moreover,
"can have a state which is preserved between calls to the pro-

cedure--and that state is independent of the calling environ-

ments."

Linden points out that a protected procedure will appear both

as a subject and as an object, when represented in a protection

matrix. A protected procedure is an object because there may

be other subjects that have the right to call it. This right

is represented in a protection matrix by the appearance of a

special access right, such as the "enter" access right referred

to earlier. A protected procedure also occurs as a subject

in a protection matrix because, naturally, "it executes in

its own protection domain."

Switching protection domains involves calling a protected pro-

cedure. The simplest case of domain switching is the one in

which no access rights are passed as parameters in the call.

The call takes place and execution begins in the protection

domain of the called procedure, as long, of course, as the

caller has the right to call this procedure in the first place.

Return to the previous protection domain, i.e., the protection

domain of the caller, is triggered by a return instruction in

the executing called procedure.

This situation is illustrated in the protection matrix in

Figure 2 [Lind76, p.411. User A can call the editor, while

executing in his own protection domain. He can also read or

write files X and Y either from his own domain or by calling

the editor, which is also allowed to read or write files X

and Y. The user can use the dictionary, however, only by

calling the editor, because the editor, but not the user him-

self, is allowed to read the dictionary.

8

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-89.
...... ,.

LUJ

LUJ LUJ

i- LuJ LUOJ o;
LL c- :3 4J

Lij LU 0r

U- r

;M11
LUI

LI

@0

9

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661.8900

A domain switch is more complex if it involves the passing of

access rights to objects as parameters "and if the protected

procedure is to be reentrant." This kind of call to a protected

procedure creates a new protection domain, i.e., a new row in

the protection matrix. "The new protection domain contains

both the permanent access rights of the protected procedure,"

defined by a template domain associated with the procedure,
"and the access rights that are passed as parameters in the

call."

This kind of situation is illustrated in Figure 3 [Lind76, p.4183.

Figure 3a shows the User A's own basic domain and the template

domain of the editor. User A has the same access rights as

he has in Figure 2, but the editor is allowed only READ access

to the dictionary. It cannot read or write files X or Y, as

it can in Figure 2. If the user wants to use the editor to

-read file X, however, he can pass access rights for file X

to the editor in the process of calling the editor. This re-

sults in the creation of a new protection domain, labeled

"INSTANCE OF EDITOR" in Figure 3b, in which the editor does

have READ access to file X. Linden notes that "other users

may be editing other files using other instances of the same

editor."

K. G. Walter [Walt75] presents what is, in effect1 , a for-

malization of Linden's account of security in the form of a

model for mandatory security. Walter designs his model-to

satisfy the "design requirements...that there be no unauthorized

disclosure of information and that, otherwise, unrestricted

sharing of information be allowed." The model is based on

the idea of restricting access to information by giving a

specific classification for each piece of information and re-

quiring a user to have the proper clearance in order to access

the information.

iCalling Walter's characterization of security a formalization
of Linden's is probably historically inaccurate, since Walter's
account appeared a year and a half earlier than Linden's.
This is the logical relation between the two theories, however,
as we show in the text.

10

1 QARR SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

objects
subjects ED ITOR FILE X -FILE' Y DICTIONARY

USER A ENTERREDEA
WRITE WRITE

EDITOR RA
TEMP LATE

Figure 3a: Protection Matrix before Call to Editor

objects
subjects EDITOR FILE X FILE Y DICTIONARY

USER A ENTERREDEA
WRITE WRITE

ED ITOR READ
TEMP LATE

INSTANCE READ READ
OF EDITOR WRITE ______

Figure 3b: Protection Matrix during Call to Editor

j HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 - (617)1.661.8900

to access the information.

Formally, Walter describes his model as an 8-tuple

M0 = (R, A, C, e, li, , Cls, Clr)

where

R is a set of repositories.

A is a set of agents.

C is a set of security classes.

OC A x R is the "observe" relation.
(a 0 r means that agent a can
oSserv-e the information stored in
repository r.)

pCA x R is the "modify" relation.
(a ii r means that agent a can I
modify the information stored in
respository r.)

1iCC x C is a pre-ordering of the set of
security classes.

CLS: R - C is the "classification" function
which associates a security class
with each repository. (Informally
Cls(r) will be referred to as the
classification of repository r.)

CLR: A - C is the "clearance" function which
associates a security class with
each agent. (Here again Clr(a) will
be referred to as the clearance of
agent a.)

Walter's repositories correspond to Linden's objects, while

his agents correspond to Linden's subjects. The observe

and modify relations correspond to two general kinds of

access right that can occur in a protection matrix. The

security classes in M0 correspond to Linden's small pro-

tection domains; it is they that determine which repositories

12

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139 •(617) 661-8900,

(objects) an agent (subject) can observe or modify (access).

There is nothing in Walter's model that guarantees a null

intersection of the classes of agents and repositories, so,

as with Linden, it is quite possible for some (or all). of the

entities involved to be both subjects and objects.

Walter imposes four axioms on his 8-tuple M0 in order to prove

his basic security theorem. The first two axioms state

explicitly that the relation 4 provides a pre-ordering of

the set C of. security classes.

Axiom 1: For all c E C, c I c.
(4 is reflexive.)

Axiom 2: For all c, d, e e C, c 4 d and d 4 e
implies c 4 e. (4 is transitive.)

"The second two axioms govern, respectively, the acquisition

and dissemination of information."

Axiom 3: For all a E A and r c R, a 0 r implies
Cls(r) 4 Clr(a) .

That is, if agent a can observe repository r,
then the clearance-of a must be greater than
or equal to the classification of r).

Axiom 4: For all a c A and r e R, a W r implies Clr(a) 4
Cls(r).

That is, if an agent a can modify repository r,
then the clearance of a is less than or equal
to the classification Jf r. Agent a can modify
only those repositories with equal or higher
security class.)

Walter says that "for making comparisons it is sufficient to

assume that the set of security classes is pre-ordered," (p. 286)

but his earlier statement that "the classification system has

a lattice structure" (p. 286), suggests that he really wants a

partial ordering, since it is partial orderings that induce

lattice structures. Formally, we include a third ordering

13

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 •(617) 661-8900

- - .

axiom to the effect that something cannot be both higher and

lower in the ordering than something else, as follows:

For all c, d £ C, c I d and d 4 c
implies c = d.

The basic security theorem states that "no information

can ever be transferred to a repository in which it can be

observed by an agent that does not have sufficient clearance

to observe the source repository." Proving this theorem

requires the introduction of a "transfer" relation T C R x R,

meaning that there is an agent that can transfer information

from the first member of R to the second in a particular

member of T. Formally, we say that r T s for r e R, s E R,

if and only if there is an a e A such that a 0 r and a p s.

The basic security theorem itself requires the reflexive,

transitive closure T* of T and the notion of information

transfer path. The relation r T* s means that "there is

a finite sequence of repositories {r } such that r = ri'
S= rn+l' and ri T ri+l for all i, 1< i < n." In other

words, r T* s if and only if information can eventually be

passed from r to s. We say that "there is an information

transfer path from repository K to repository s," if it is,

in fact, the case that r T* s.

Walter's basic security theorem can be stated formally in

either of two ways, as follows:

Theorem: For all r, s e R, if r T* s, then Cls(r)
< Cls(s). In other words, if there is an
Information transfer path from repository
r to repository s then Cls(r) 4 Cls(s).

Corollary: If r and s are repositories and the classifi-
cation of r is not less than or equal to
the classification of s, then there is no
information transfer path from r to s.

14

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

What this theorem says is that if information flows from one

repository to another, then the latter has a security class

that is the same as or higher than the former; in other words,

information can flow only upwards. Guaranteeing that,. in a nut-

shell, is what the security problem is all about.

~i~iRORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

3. SPECIFICATION, IMPLEMENTATION, AND LEVELS OF ABSTRACTION

Walter does not stop with M0 ' but also presents two other models,

Mi. which is outlined in Figure 4, and M2, which is too compli-

cated simply to exhibit in a figure without further explanation.

Walter describes the relationship that is supposed to exist

between successive models in the seauence M0 , M '%' in terms~~1' "2 i em

of a "technique of structured modeling" (p. 288), in which

successive "levels of modeling" are used to arrive at the full
description of a system. He also uses the term "Structured
Specification" (p. 285) to denote the approach to specification

that results in models that are related in this way. Model M1

"will satisfy the security requirements in M0 plus further de-

sign requirements... These additional restrictions make the

design more implementation specific" (p. 288) by representing

the security system as "a file system structured as in a tree

of arbitrary depth" and by providing "a mechanism for inter- [

agent communication 4hich does not require accessing a shared

file" (p. 290).

M 2 is a still "more specific security system model" (p, 290)

involving "mechanisms which will be used as discretionary

controls for access to files." Walter says that the defini- p

tion of M0 "has intuitive appeal, however, the way to apply

M0 to a complex operating system is far from obvious" (p. 293).

As for Mi, "though still fairly general, this model is ap-

propriate for a small class of machines. The next model, M2 ,

is applicable to few systems besides Multics," i.e., is getting

very close to a description of (part of) an actual operating

system, as implemented. "Eventually, some model (probably

an M3 or M4) will closely resemble commands in the Multics

System."

--eral framework for understanding what '-alter is trying

- s provided by the SRI systems model described by

4, %MASACHUSLTIS AVENUE . CAMBRIDGE, %iASSACHUSETTS 02139 •(617) 661-8900

1 (F,M,A,C, PFaF' PM' M ' ' 46,ClsClr)

WHERE:

F is a tree of files

M is a set of mailboxes

A is a set of agents

C is a set of security classes

PF A x F is the "retrieve information" relation.
(a pF 'f means that agent a can retrieve in-

formation from file f.)

aF j A x F is the "store information" relation.
(a a F f means that a can store information in f.)

PM C A x M is the "receive" relation.
(a pM m means that agent a can receive infor-

mation through mailbox m.)

aM C A x M is the "send" relation.(a a M m means that a can send information to m.)

4C C x C is a pre-ordering of the set of security class.

6 C F x F is the "dominate" relation on the set of files.
(It defines the "tree" structure on the files.)

Cls: FUM - C is the "classification" function for files
and mailboxes

Clr: A - C is the "clearance" function for agents.

AXIOMS FOR M 1

A1.I: For all c E C, c 4 c
(4 is reflexive).

A1.2: For all c, d, e c C, c 4 d and d 4 e implies c 4 e

(4'is transitive).

A1.3: For all a c A and f c F, a pF f implies Clr(f) I Clr(a).

(An agent can only "retrieve" information from a file
with equal or lower classification).

Figure 4: Walter's "Tree Structured Directory Model - MI

S1

Al.4: For all a e A and m e M, a pM m implies Cls(m) = Clr(a).

(An agent can only "receive" information through a mail-
box with classification equal to its own clearance).

A1.5: For all a e A and f c F, a aF f implies Clr(a) 4 Cls(f).

(An agent can only "store" information in a file with
equal or greater classification).

A1.6: For all a e A and m e M, a aM m implies Clr(a) 4 Cls(m).

(An agent can only "send" information through a mailbox
with equal or greater classification).

A1.7: For all f c F, f 6 f (6 is reflexive).

A1.8: For all f, g e F, f 6 g and g 6 f implies f = g.
(6 is antisymmetric).

A1.9: For all f, g, h e F, f 6 g and g 6 h implies f 6 h.
(6 is transitive).

A1.10: For all f, g, h c F, g 6 f and h 6 f implies g 6 h
or h 6 f (sic).
(6 has the "tree" property).

A1.11: For all a e A, and f, g e F, a pF g and f 6 g implies

a pF f . (In order to retrieve information from a file,

an agent must be able to retrieve from (i.e. search)
every file which dominates it).

A1.12: For all a e A, and f, .g E F, a aF g and f 6 g and f # g

implies a pF f . (In order to store into a file, an

agent must be able to retrieve from or search every file
which strictly dominates it. This specifically allows
an agent to store in a file from which it cannot re-
trieve; i.e., write-up is permitted.)

A1.13: For all a e A, and f, g c F, a aF f and f 6 g implies

a aF g. (Since it is expected that attributes of a file

will be maintained in a dominating file (directory), if
an agent can store into a directory file and thus change
attributes of an inferior file, then the agent must also
be able to store into (modify) the inferior file).

A1.14: For all f e F, there exists an a £ A such that a aF f .

(There are no files which cannot be stored into (modified)
by at least one agent).

Figure 4: Walter's "Tree Structured Directory Model - MI
(con't)

19

hiGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

...

2
Robinson [Robi75], [Robi77]. Robinson characterizes a sys-

tem description in terms of "a sequence of ordered pairs

{(P0 ' M0), (Pit MI)'... (Pn' Mn)}''" called a hierarchically

structured program" (p. 272) in which Pi is a Set of abstract

programs that run on the abstract machine M. He notes that,

in general, the pairs will occur in a tree structure, and that

he assumes a linear ordering only in order to simplify the

argument.

Each program runs on a machine, but since the
collection of machines forms a hierarchy, the
primitive operations of a machine at some level
are realized by a set of programs running on
a machine at the next lower level (one program
corresponding to each operation of the machine)
(p. 272).

"The programs abstract from the implementation details of

-machines on which they run" and "the only information avail-

able to a program is the external behavior of the machine."

The general idea of this structuring is illustrated in Figure 5,

in which "M0 is the most primitive machine and can be viewed

as the instruction set for a hardware machine or as a higher-

order language" and in which "P n is the abstract program at
nnthe highest level, running on machine Mn." The direction of i

the arrows in the diagram represent the flow of implementa-

tion,in the sense that,"for all values of i(O < i < n), the

set of abstract programs P. running on the abstract machine1
Mi implements the abstract machine Mi+,," while itself run-

ning on abstract machine Mi . "The system as a whole is

equivalent to some program P running on a machine M, where

M = M0 and Pn is an abstraction of P."

Each of the abstract machines in Robinson's framework "can

be described as a module of Parnas...in which both the in-

ternal state and the transformation rules are characterized

2The model description in [Robi75] differs somewhat from that
of [Robi77]. We will quote the latter, unless otherwise
noted.

20

,HIGHER ORDER SOFTWARE, INC..• 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

n n.

1+1

.0"m'by runningon tis m~achine M

U3

0

fO _

0 h% ne2r n

pro

SR oelo roram Pv thRu on achn M

..

s tsh

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661.8900

as functions of two types - V-functions (Value functions) and

O-functions (Operation functions)." Each "program running on

an abstract machine can be expressed as a sequence of calls

to the functions that make up an abstract machine." A V-func-

tion is one that "returns a value when called; the set of

possible V-function values of the module defines the state

space (or abstract data structure) of the module." A module's

state is denoted by a particular set of values for each V-

function. 0-functions describe state transformations by de-

fining new values for V-functions. "A state transformation

occurs when an 0-function is called and is described as an
assertion relating new values of V-functions to their values

before the call." Such an assertion "is a predicate con-
taining V-functions for which the predicate is true." It
"specifies that, as a result of a call, the new state is one

of some set of possible states; therefore the specification

-may be incomplete." The effect of this feature is that it
"postpones binding of certain decisions until the abstract

program is. implemented or even until run-time." An example

of an abstract machine characterized as a Parnas module

specification is given in Figure 6 [Robi77, p.2731.

Except for its reversed numbering scheme, it seems reasonably-

clear that the SRI framework we have just outlined corresponds

more than roughly, in intent, to Walter's "technique of

structured modeling" or "Structured Specification." Whereas

Walter denotes his most abstract "level of modeling" by the

number 0, with increasing numbers as we get closer to imple-

mentation, Robinson uses 0 to denote his least abstract "level

of abstraction," with numbers increasing as we get further

away from that'level. The basic idea behind the separation

of levels, however, is pretty much the same in both frame-

works.

22

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

integer V-function: LENGTH

Comment: Returns the number of occupied positions in the
register.

Initial value: LENGTH = 0
Exceptions: none

Integer V-function: CHAR(integer i)

Comment: Returns the value of the ith element of the
register.

Initial value: Vi(CHAR(i) = undefined)
Exceptions: IOUT OF BOUNDS: i < 0 V i > LENGTH

O-function: INSERT(integer, i,j)

Comment: Inserts the value j after position i, moving
subsequent values one position higher.

Exceptions:

IOUTOF BOUNDS: i < 0 V i > LENGTH

J_OUTOFBOUNDS: j < 0 V j > 255

TOOLONG: LENGTH > 1000

Effects: LENGTH = 'LENGTH' + 1

Vk(CHAR(k) = if k < i then 'CHAR' (k)

else if k = i + 1 then j

else 'CHAR' (k-i))

O-function: DELETE(integer i)

Comment: Deletes the ith element of the register,
moving the subsequent values to fill in the gap.

Exceptions: IOUTOFBOUNDS: i < 0 V i > LENGTH K

Effects:

LENGTH = 'LENGTH' - 1

Vk(CHAR(k) = if k < i then 'CHAR' (k)

else 'CHAR' (k + 1))

Figure 6

Robinson's Register Module Specification

23

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

16........_

Walter describes the idea behind his methodology as follows:

In many ways, Structured Specification is similar
to Structured Programming; "levels of specification"
are analogous to the "levels of abstraction" dis-
cussed in Structured Programming. However, in some
sense, these concepts are orthogonal to each other.
Structured Programming is a technique for evolving
an orderly description of how a particular problem
will be solved. Typically,--t is a matter of filling
in the "nitty-gritty" details of an algorithm which
is well understood.

Conversely, Structured Specification concentrates
on evolving an orderly description of precisely
what problem is to be solved. In addition, the
various levels of specification provide a forum for
discussing why the program is being designed in a
particular way. (p. 285).

Differences in terminology aside (for example, Robinson's

"levels of abstraction" would seem to be intended to cor-

respond to Walter's "levels of specification," as well, per-

haps, as to the "levels of abstraction" of structured program-

ming), the aim of Robinson's methodology is the same.

Robinson,like Walter, is concerned with specification, not

with implementation, except as-an ultimate aim. Systems must

eventually be implemented, of course, but this is not the

point. He describes his methodology as one which "formally

represents a program in terms of levels of abstraction, each

level of which can be described by a self-contained non-

procedural specification." (p. 271). The point is that a

program is intended to be characterized in terms of what it

is supposed to do (non-procedural), rather than in terms of

how (procedural) it is supposed to do it, exactly as Walter

says.

24

HI(jHLK UKULK UIt- I WAKL, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661.890I

Robinson's characterization of a level of abstraction in

terms of abstract machines is not a problem, because this

involves only a choice of conceptualization and does not

necessarily have to affect the formal methodology in an ad-

verse way. A problem is created by the use of abstract pro-

grams, however, in the actual characterization of the ab-

stract machines. A program is, by definition, a sequence

of instructions, and so is intrinsically procedural. Indeed,

Robinson characterizes "a program running on an abstract

machine... as a sequence of calls to the functions that make

up an abstract machine" (p. 272), as we have seen. As long

as a systems framework uses abstract programs to characterize

the functions of his primitive machines, we are automatically

dealing with the how of those functions, rather than the what,

i.e., with their implementation, rather than their specifi-

cation.

We should note Robinson's assertion that "the Parnas speci-

fication language expresses state transformations in a non-

procedural way... A Parnas module specification is a self-

contained medium for defining an abstraction: V-functions

are primitive, and 0-functions are described solely in terms

of V-functions and the constructs of the assertion language."

What he means, presumably, is that, since the 0-functions

can be reduced to ("described solely in terms of") the V-

functions and since the V-functions are primitive, i.e., not

further reducible, there is nothing more that he has to do to

characterize the module. Those functions (0-) which can

be reduced have been reduced and those functions (V-) which

have not been reduced need not be reduced, because they cannot

be reduced. That, after all, is the meaning of "primitive."

While it is true that the primitive elements of a system (any

kind of system) cannot (or need not) be further reduced

(decomposed, described, etc.) in terms of other elements of

the system, however, it by no means follows that there is no

need to characterize them at all.

23

HIGHER ORDER SOFTWARE, INC." 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900
HIGHERORDEROFTWAREINC 843ASA -USTT

Consider a simple case from plane Euclidean geometry. In that

geometry, we can take the notions of point and line as primi-

tives and notions like rectangle, triangle, and vertex as

non-primitives that can be described in terms of the primi-

tives. Thus point and line correspond to Robinson's V-functions,

since he says these are primitive, while rectangle, triangle,

and vertex correspond to his O-functions, since he says these

are not primitive, but "are described solely in terms of V-

functions." A rectangle or a triangle can be described

(roughly, to avoid getting too technical and missing the main

point) as a particular configuration of lines, and a vertex

can be described as a point that is the intersection of two

lines. Thus the non-primitives are described in terms of the

primitives, exactly as Robinson wants.

'The story does not end here, however. While reduction of geo-

metric entities ends at the level of point and line (and per-

haps other primitives, which we are ignoring for simplicity),

point and line themselves are then characterized in terms of

each other, i.e., in terms of their mutual interaction, by

means of axioms. Something is a point or a line if and only

if it behaves in accord with the axioms. The axioms of a

geometry, in fact, are its most important part, because every-

thing else about the geometry follows from them, once the

appropriate definitions of non-primitive entities in terms

of primitive ones are stated.

What this means in Robinson's case is that it is not enough

simply to state that the V-functions are primitive and leave

it at that. Looking carefully at Figure 6, we see that the

only way that V-functiOns are characterized within the module

is in terms of informal comments, in English, that tell us

what the functions are supposed to do. The formalism, however,

places no constraints on what these functions can do, except for

giving them initial values and (perhaps) restricting their

domains. Literally, a function that has these initial

26
HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUL . AMbKIUk3t, MA5ALMHU I Ib U21 JY.(b] /I bbi 89Ut

values and these domains can serve as the LENGTH and CHAR

functions in the module. Since this is too general for what

Robinson intends, he is forced to narrow down the candidate

functions for LENGTH and CHAR by characterizing them outside

of the module in terms of abstract programs, which do spell

out formally and, by definition, algorithmically the func-

tions that he wants. This step, however, ipso facto removes

us from the realm of specification and places us in that of

implementation. In the process, we lose "the major advantages

of Parnas specifications." namely, "that they abstract from

the algorithms of implementation and are self-contained" (p. 272).

We see that Parnas' modules do not really characterize their

functions completely, as they are supposed to. One of the

underlying reasons for this problem is that Parnas tries to

make his modules do too much. Parnas confuses the need to

decompose a system into subsystems with the need to char-

acterize in precise terms the kinds of objects the system

deals with, proposing that both needs can be satisfied with his

single notion of module.

In many places, Parnas talks about "dividing the system into

modules " [Par72b, p. 1053] and "decomposing a system into

modules," so it is clear that modules are intended to be the

kind of thing into which systems are decomposed. With respect

to the STACK module in Figure 7, however, he tells us that

it is proposed as a definition of a kind of object:

We propose that the definition of a stack shown in
Example 1 should replace the usual pictures of imple-
mentations (e.g., the array with pointer or the linked
list implementations). All that you need to know about
a stack in order to use it is specified there. There
are countless possible implementations (including a large
number of sensible ones). The implementation should be
free to vary without changing the using programs. If
the using programs assume no more about a stack than is
stated above, that will be true. (p. 332)

C27

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

It follows from these facts that Parnas is decomposing systems

into kinds of objects, but this is not the sort of result he

really wants. It is this kind of inadequacy that leads Robinson

to try to augment the Parnas methodology with things like

abstract programs.

28
MIbUtK UKUIK S0- IWAK, INC. • 43 MASSACMUbt.I IS AV.NU. • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Function PUSH (a)

possible values: none I,

integer: a

effect: call ERRl if a > p2 V a < 0 \' 'DEPTH' = pl

else [VAL = a; DEPTH = 'DEPTH" + 1;]

Function POP

possible values: none

parameters: none

effect: call ERR2 if 'DEPTH' = 0

the sequence "PUSH(a); POP" has no net effect if no error
calls occur.

Function VAL

possible values: integer initial; value undefined
parameters: none

effect: error call if 'DEPTH' = 0

Function DEPTH

possible values: integer; initial value 0

parameters: none

effect: none

pl and p2 are parameters. pl is intended to represent the
maximum depth of the stack and p2 the maximum width or
maximum size for each item.

Figure 7

Parnas' Stack Module

I
i HIGHER uRDER SOFTh ARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSET'TS 02139 •(617 661-8900 ,

4. HOS AS A GENERAL SYSTEMS THEORY

Like Linden and Walter, HOS recognizes that there are essentially

two modes of existence in the world, that of being and that of

doing, and that everything generally manifests both modes at

once. A given thing can either be or do and, in general, will

both be and do at the same time. This dichotomy reflects the

related bifurcation between being and becoming. If there is

something that is doing, then there is something (perhaps the

same thing) that is being done to, and this latter thing is

therefore becoming. Again, in general, anything that is doing

is also being done to and so is itself becoming, as well as

being.

This enables us to understand the important relationship be-

tween constancy and change. If we remove the front element

from a queue, for example, we still have the same queue, with

one element removed, but we also have a different cueue, i.e.,

the one that differs from the original one in exactly that

element. The queue can still be the same queue, even though

it has become a different queue, and we are free to choose

whichever of these aspects of the situation fits our needs

for any particular problem. We can also say the queue has

changed its state, stipulating that the queue itself has not

changed, but then it is the states that are being or becoming,

so the same dichotomy emerge. again on a higher level of ab-

straction.

Linden expresses the distinction between being anl doing in

terms of his distinction between objects and subjects, as

we have seen. Objects are things that are done to, i.e.,

they simply are, rather than do. Subjects, in contrast,

are things which do, and the objects are precisely the things

they do to. Walter expresses this dichotomy in terns of his

distinction between repositories and agents, as we have also

31

-KifHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHL'SEII

seen. Agents are things which do, and repositories are things

which are and which therefore are done to by the agents. As

we have discussed, anything, in general, will both be and do,

so anything is both an agent and a repository and both a sub-

ject and an object, as Linden, and presumably Walter, would

agree.

While both Linden and Walter thus recognize this fundamental

dichotomy in any system, there are serious defects in their

formulations of this dichotomy. The problem with Linden's

formulation is that it is not formal. All he tells us is that
"a protection model views the computer as a set of active

entities called subjects and a set of passive entities called

objects" (p. 415), with no formal characterization of what

these subject/object things or their properties are supposed

to be. Such an omission is perfectly justifiable in the con-

-text of the general survey sort of article in which it occurs,

but it must be corrected in a complete systems theory.

Walter's formulation is quite formal, but it falters in a

different respect. A fully general systems theory should be

capable of expression at the highest possible level of

generality. Like Linden's account it should state things

solely in terms of subjects and objects, i.e., things that

do and things that are, at this highest level of generality,

while permitting subcategorizations of these basic categories,

e.g., procedure, protection domains, etc., at lower levels

of.generality; Walter's problem is that he-conflates levels

by including something not at all on a par with agents and

repositories with respect to generalitv, i.e., security

classes, on tie highest level of generality of his systems

theory. Again, within.a sufficiently limited domain of in-

terest, Walter's decision to lump the highly specific notion

of security classes in with the completely general notions of

agent and repository is excusable, but outside of such a domain,

32

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

it will place unnecessary restrictions on any system specified

in accordance with the theory. A general systems theory

should allow the introduction of lower-level notions like

security classes, if they are needed, but it should not require

them on its most general level, where only agents and re-

positories should reside.

HOS expresses the distinction between being and doing in

terms of the familiar notions of data and function, and it

does this in a completely formal way. Anything that can be

can be represented as a member of a data type, and anything
3

that can do can be represented as a function . As we would

expect from a correct formulation, anything that can be, i.e.,

a datum, can also do, by serving as input to a function, and

anything that can do, i.e., a function, can also be, since

functions themselves make up a data type.

For example, if datum x is mapped by functions fit f2 f3'

f4 ' f5 onto data y, Y2 ' Y3 ' Y4' Y5, respectively, then x

itself can be viewed as a function that mapsthe data fit f2 '

f3 ' f4' f5 onto yI, Y2 ' Y3 ' Y4 ' Y5 - Functions themselves

can be data, in other words, anddata can be functions,de-

pending on the requirements of the particular problem we are

working on. If FXY is the subset of data type FUNCTION whose

members map data type X into data type Y, then X is the sub-

set of FUNCTION that maps FXY into Y. Both interpretations

are correct, in general, and which one we choose depends on

what we need for a specific problem.

In our formulation, however, unlike Linden's, this revers-

ability follows naturally from the nature of data and functions.

We do not really have to say explicitly that subjects can also

be objects and vice versa, because that fact follows automati-

cally from our identification of subjects with functions and

objects with data.
3[Ham76a) uses the term "function" in a more highly restricted sense and the
teriz "operation" in the sense of our "function." For our present purposes,
the distinction is unimportant, and we will use the two terrs interchangeably.

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

- ,,.. - -,

Again in accordance with the fundamental dichotomy, although

data and functions are distinct components of systems, they

are at the same time inseparable from each other, because

each is characterized formally in terms of the other. A

function consists of an input data type, called its domain,

an output data type, called its range, and a correspondence,

called its mapping, between the members of its domain and those of

its range; a function can be characterized, therefore, as an

ordered triple (Domain, Range, Mapping), where the components

are as we have just stated. A data type consists of a set

of objects, called its members, and a set of functions, called

its primitive operations, which are specified by giving their

domains and ranges, at least one of which for each primitive

operation must include the data type's own set of members, and

a description of the way their mappings interact with one

another and, perhaps, with those of other functions; a data

.type can thus also be characterized as an ordered triple, this

time (Set, DR, Axioms), where Set is the set of its members,

DR is a statement of the domains and ranges of its primitive

operations, and Axioms is a description of the interactive

behavior of the mappings of the primitive operations.

An example of an HOS data-type specification, namely,type

STACK, is given in Figure 8, written in the HOS specification

language AXES [Ham76a]. It is not difficult to see that this

specification avoids all of the problems that we discussed

in connection with Parnas' stack module in Figure 7. The

specification in Figure 8 has absolutely nothing to do, b

itself, with system decomposition. It is a definition of

a kind of object, plain and simple, and thus serves exactly

the kind of purpose it is suited to serve, rather than trying

to overextend itself, as Parnas' module does. Furthermore,

it is entirely self-contained, because the primitive operations

are characterized in terms of each other, rather than being

left dangling in the "module" to be rescued by abstract

34

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661.8900

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

stack 1 =Push(stack 2 1 integer 1)

stack 1 =Pop(stack 2);

integer1 Top(stack1)

AXIOMS:

WHERE Newstack IS A CONSTANT STACK;

WHERE s IS A STACK;
WHERE i IS AN INTEGER:

Top(Newstack) =REJECT;

Top(Push(s,i)) =;

Pop(Newstack) =REJECT;

Pop(Push(s,i)) =s;

END STACK;

Figure 8

HOS/AXES Data Type Stack

35

*jHIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

programs. Finally, it is absolutely implementation-free,

because any implementation, whether made up of vacuum tubes,

transistors, integrated circuits, magnetic bubbles, or ice-

cream cones, will be a satisfactory implementation, as long

as primitive operations can be defined in the implementation

that behave in accordance with the axioms.

An interesting thing happens when we try to specify Walter's

M 0in terms of HOS data types. The first thing we notice

about 1 0is that repositories are more basic than agents.

An agent, in Walter's terms, is anything that can observe or

modify a repository, while a repository is anything at all

that can be partially ordered. Walter says that "associated

with each repository is a security class which measures the

relative sensitivity of the information stored within it."

Since the only real function of the security class is to

measure "relative sensitivity," it follows that their func-

tion could be accomplished just as well by partially order-

ing the repositories themselves. This enables us first to

characterize the class of repositories as a data type inde-

pendently of the class of agents and then to characterize

the class of agents as a data type in terms of the data

type REPOSITORY. It also enables us to eliminate the class

of security classes altogether from our model by imposing

our partial ordering directly on the data type REPOSITORY

and assigning each agent a maximal repository it can observe

and a minimal repository it can modify. This confirms our

earlier observation that Walter is conflating levels of

generality in his model. Security classes can be introduced

as a data type at a lower level of generality, if they are

really needed -for a particular problem, or if they are simply

desired for reasons of convenience or elegance, but they have

no place on the highest level of generality of a general

systems theory.

36

LHIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661.8900

Figure 9 gives the HOS specification of data type REPOSITORY,

written, as usual, in AXES. As just noted, the only primitive

operation we need in this data type specification is the

partial ordering Atmost, whose axioms are available with AXES

and thus do not need to be stated explicitly.4

DATA TYPE: REPOSITORY;

PRIMITIVE OPERATIONS:

boolean = Atmost(repository I , repository 2)
AXIOMS:

END REPOSITORY;

Fiqure)

HOS specification of data type REPOSITORY

Note that whereas Walter treats his partial ordering as a

general relation, i.e., as a general subset of C x C, or equi-

valently, a general set of ordered pairs (CI,C2), we treat

it as a function, i.e., a subset of REPOSITORY x REPOSITORY

x BOOLEAN in which the first two components of each

(RI,R2 ,b)uniquely determine the third. The possibility

of treating any relation as a function that maps into BOOLEAN

is a general property of relations which HOS takes full ad-

vantage of. It enables us to integrate the treatment of re-

lations that might not normally be viewed as functions into

the general functional-decomposition framework of HOS and thus

to see how such "non-functional" relations fit into the system

as a whole of which they are a part.

4Equality is also needed, but this is provided in AXES itself
for every data type. Atmost is not a universal operation,
as Equality is, but is universally available, in that we can in-
clude it in any data type specif ication with whose axioms its
own axioms are consistent. The axioms of Atmost are stated once
and for all in AXES and thus need not be restated every time
the operation is incluced among those of a particular data type.
Once Atmost is included among the primitive operations of a
particular data type, its axioms are automatically those that
are stated for it in the theory. See (Cus77a] for discussion
of these ideas.

37

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

Figure 10 gives the AXES specification for data type AGENT . As noted earlier,

there is one primitive operation, Observeclearance, that assigns to each agent

a maximal repository it can observe and a second primitive operation, Modify-

clearance, that assigns to each agent a minimal repository it can .modify.

The remaining two operations, Observes and Modifies, correspond to Walter's

e ("observe") and p ("modify") relations, respectively, in the way discussed

in the preceding paragraph.

DATA TYPE: AGENT;
PRIMITIVE OPERATIONS:

•-repository = Observeclearance(agent);
repository = Modifyclearance(agent);
boolean = Observes(agent,repository);

boolean = Modifies(agent,repository);

AXIOMS:
WHERE a IS AN AGENT
IWHERE r IS A REPOSITORY

(Observes(a,r) Atmost(r,Observeclearance(a)) = True;
(Modifies(a,r) D Atmost(Modifyclearance(a),r)) = True;
Atmost(Observeclearance(a), Modifyclearance(a)) = True;
END AGENT;

Figure 10. HOS Specification of Data Type AGENT

The three axioms of data type AGENT together provide the effect of Walter's

Axioms 3 and 4, without the use of "security classes." The first axiom says
that if an agent can observe a repository, then that repository must be lower

(but not necessarily strictly lower) in the partial ordering of repositories

than the maximal repository the agent can observe. The axiom functions, in

other words, as a mutual definition of "can observe" and "maximal observable

repository" in terms of each other and the partial ordering, in the usual man-

ner of HOS data-type axioms. The second axiom says that if an agent can

modify a repository, then that repository must be higher (though perhaps not

strictly higher) in the partial ordering of repositories than the minimal re-

pository that the agent can modify. This functions, again, as a mutual defini-

tion of "can modify" and "minimal modifiable repository" in terms of each

other and the partial ordering.

Given the first two axioms, the third axiom provides all of the effect of

talter's "security classes" by guaranteeing that the maximal observable

JThe symbol "D" is a traditional infix s)mbol for material implication
in formal logic and is used here in place of the AXES prefix operation
sybol "Entails" [Ham76a]. It seems reasonable to use such traditional
infix symbols as abbreviations for AXES prefix symbols, whenever this is
convenient, and this convention is adopted explicitly in [Ilam7tba and [Cus77a].

38

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 ' (617) 661-8900
L __7. ..7 , .. . ' : .. .It r' : : " " ' r,,, .- , I i

repo-itory is always lower in the partial ordering than the minimal

modifiable repository. This means that, for a given agent, the

lattice of repositories can be divided into an "upper half" and a

"lower half," such that the agent can observe only repositories in

the lower half and modify only repositories in the upper half.

This, however, is really the only purpose that security classes

serve in M0 , so we really can dispense with them entirely, as we

have done.

In Walter's terminology, we havc reduced his 8-tuple

(R, A, C, e, p, <i, Cls, Clr)

to a 7-tuple

(REPOSITORY, Atmost, AGENT, Observes, Modifies,
Observeclearance, Modifyclearance)

by showing that one of his data types is superfluous and that
his primitive operations that map into that type can be re-

-placed by different primitive operations which have the same

effect but which have only the two remaining data types as

domains and ranges. Whereas Walter's 8-tup]e requires two

special axioms, besides those for the partial ordering, which

are intrinsic to AXES, but which Walter has to state, making

a real total of five axioms for him, our 7-tuple requires

only three explicitly stated axioms, as shown in Figure 5.

It should be noted that if we had tried to specify explicitly

all three data types that Walter proposes, we would immediately

have run into problems. Walter names his data types and de-

scribes how his operations (functions/relati6ns) are supposed

to work, but he does not explicitly specify either the opera-

tions or the types. His Axioms 3 and 4, for example, really

express relationships between types, rather than defining

characteristics of the individual types themselves. From

the HOS point of view, this amounts to putting the cart be-

fore the horse, stating a relationship between two things

before we have any idea at all what it is that is beinc related.

From Walter's point of view, of course, this is perfectly legi-

timfate, because, presumably, he views the situation as being

39

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .617) 661-8900

analogous to that of points and lines in plane geometry, which I
also are usually characterized not independently as data types,

but in terms-of each other. The advantage of our point of

view is its complete generality. Identifying being things

and doing things with data (types) and functions, respectively,

enables us to specify any system at all in a principled way,

without introducing any further kinds of entities. Walter's

formulation of this distinction in terms of a mutual defini-

tion of repositories and agents, in contrast, still requires

him to use functions (and relations, for that matter) to de-

fine his repositories and agents. In our framework, reposi-

tories and agents are data and functions, respectively, and

that is the end of that.

We could have defined a type "SECURITY CLASS" in terms of the

partial ordering, for example, but then we would have been

unable to write axioms on the data types AGENT and REPOSITORY

for the "primitive operations" CLS and CLR that map these

types into that typ,4 without introducing a host of other

"primitive operations." Similarly, there would have been

no non-arbitrary way to decide whether 6 and p', which take

both agents and repositories as input, should be "primitive

operations" on AGENT or on REPOSiTORY. By recognizing that

the only function of "SECURITY CLASS" in M0is to provide

an appropriate partial ordering for REPOSITORY, we can see

that REPOSITORY is a more basic data type than AGENT and

define the partial ordering directly on REPOSITORY, as

we did. In other words, REPOSITORY is "SECURITY CLASS" at

the level of -,enerality at which M0is defined. Whether

we call that single type "REPOSITORY" or "SECURITY CLASS"

is, of course, entirely a matter of choice.

The other important function that Parnas tries to make his

modules serve, i.e., system decomposition, is specified in

1105 in terms of decomposition trees, also called control

maps. Given a system that involves certain data types, the

function the system performs can be decomposed into a tree

structure whose nodes are functions and whose terminal nodes,

in particular, are primitive operations of the data types,

40.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661 -S90.

where the collective effect of the functions at the terminal

nodes is the same as that of the system as a whole. Such

tree structures are not intended to provide definitions of

kinds of objects, as Parnas' modules are, but represent system

decompositions into subsystems, plain and simple. An example
a+bof such a decomposition tree, for the function y = c is

shown in Figure 11. The domain and range of the decomposed

function can be determined by the typed variables that re-

present inputs and outputs and by the primitive operations that

appear at the terminal nodes. The tree itself is precisely

what gives the mapping of the decomposed function, by showing

how that mapping gets accomplished in terms of the collective

behavior of the independently characterized primitive operations.

The key to the usefulness of these decomposition trees lies

in the six HOS axioms, listed in Figure 12. It is these axioms,

-in fact, and their consequences, of course, that make HOS HOS.

While HOS can specify any system that can be specified, the

specification must be in accordance with these axioms or the

system may be incomplete or unreliable. Any software system,

in particular, that is specified in accordance with these axioms

is automatically guaranteed to be reliable, in the sense that

no data or timing conflicts can ever occur [Ham76b]. Formally,

the axioms tell us that a well-formed HOS tree is always equiva-

lent to a tree in which every node is occupied by one of the

three primitive control structures, shown in Figure 13. Abstract

control structures, defined in terms of the primitives may

also appear in well-formed trees, and, conversely, any control

structure, i.e., configuration of parent and offspring nodes,

can appear in a well-formed tree as long as it can itself be

decomposed into the primitives.

Such an HOS tree can be interpreted either as decomposing a

function into primitive operations or as building up a func-

tion out of primitive operations. Which interpretation we

41

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 t 617) 661-8t,00

y =f(a,b,c,d)

tl Sm~a~) t= Difference(c,d)

Figure 11

HOS Tree for Function y ad

42I

HIGHER ORDER SOFTWARE, INC. - 43 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSET-TS 02139 (617) 661-8900

DEFINITION: Invocation provides for the ability to perform a function.

AXIOM 1: A given module controls the invocation of the set of
functions on its immediate, and only its immediate
lower level.

DEFINITION: Responsibility provides for the ability of a module to
produce correct out put values.

AXIOM 2: A given module controls the responsibility for elements
of its own and only its oin output space.

DEFINITION: An output access right provides for the ability to locate a
variable, and once it is located, the ability to give a value to
the located variable.

AXIOM 3: A given module controls the output access rights to each
set of variabies whose values define the elements of the
output space for each immediate, and only each immediate
lower-level function.

DEFINITION: An input access right provides for the ability to locate
a variable, and once it is located, the ability to reference the
value, of that variable.

AXIOM 4: A given module controls the input access rights to each
set of variables whose values define the elements of the
input space for each immediate, and only each immediate
lower-level function.

DEFINITION: Rejection provides for the ability to recognize an improper
input element in that, if a given input element is not acceptable,
null output is produced.

AXIOM 5: A given module controls the rejection of invalid elements
of its own, and only its own, input set.

DEFINITION: Ordering provides for the ability to establish a relation
in a set of functions so that any two function elements are com-
parable in that one of the said elezrents precedes the other said
element.

AXIOM 6: A given module controls the ordering of each tree for
its immediate, and only its immediate, lower level.

Figure 12

The Axioms of HOS

.'3

* HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

y f (x)

y f 1(t) ft (x)

COMPOS ITION

y f (x)

P(x) ~ P(x)

y f (X) y f f2(X)

SET PARTITION

y f (XI) 2 f 2(x 2)

CLASS PARTITION

Figure 13

The Three Primitive Control Structures of HOS

44

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

choose for a particular tree depends, as usual, on the use we

want to make of it. Under either interpretation of such a

tree, however, what we end up with is a specification of the

function at its root node that is genuinely non-procedural,

i.e., non-algorithmic, and entirely free of implementation

considerations. The tree provides a complete and explicit

account of what functional mapping the function performs

and how that mapping is collectively carried out on the types

involved by their primitive operations. Everything is clearly

spelled out in terms of the hierarchical organization of

functional mappings, and this --no more, no less-- is exactly

what we require of an adequate specification methodology.

The need for abstract programs, i.e., (procedural) sequences

of abstract calls to the primitive operations of abstract

machines, is entirely eliminated. It follows that replacing

each of Robinson's P. 's with an HOS tree will make the pro-

.blems we found in connection with his "abstract programs"

disappear.

It is worth noting, at this point, that HOS does not distin-

guish at all between 0-functions and V-functions, because,

however important this distinction may be in particular im-

plementations, it simply does not exist from the point of

view of specification, i.e., on the highest level of general-

ity. Functions are things that do, as opposed to be.

Sorting out different kinds of functions is something we can

do at lower levels of generality, but has no place as a re-

quirement of the theory itself.

To illustrate this point again, suppose we have a register

whose position's are filled with integers, as in the example

of Figure 6 (a stack or queue would do just as well for our

purposes; c.f. Figure 8 for data type stack and [Cus77b] for

data type priority queue, for example). Obviously, there

is a big difference between an implemented register and the

integers it contains, and thus between changing the state of

45

I'
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

_ • .-"_&.,meQ

the register and taking one of those integers as a value.

From the point of view of specification, however, a register

is every bit as much of an abstraction as an integer. The

two abstractions differ, moreover, only in the interactive

behavior of the primitive operations that are used to char-

acterize their data types, as this behavior is specified in

the axioms of the respective type. From the point of view of

specification, therefore, changing the state of an implemented

register amounts simply to producing a new abstract register

as a value. If we take a register and remove its last element,

for example, we get a new register that is identical to the

original register except that it lacks the original register's

last element. This may not be what happens in implementation,

but it is the logic of the situation, and that is what speci-
6

fication is really all about

As we observed earlier, Robinson supplements his "abstract

machines" with "abstract programs" in order to do fully the

two jobs that Parnas wants his modules to do. Robinson's

"abstract programs" tell us what the functions really are that

are intended to be characterized in the modules.

Robinson's intention can be successfully achieved by replacing

each component of his framework with a corresponding component

of HOS. Since his "abstract programs" serve as the characteri-

zations of functions, we replace each of them with a decomposi-

tion tree. This relieves his "abstract machine" modules

of the burden of serving as the units of system decomposition

and leaves them free to serve as definitions of kinds of ob-

jects, which is what they would prefer to do anyway, as we

have seen. We thus replace each of the "abstract machines"

with a set of data-type specifications of HOS.

6Note that this is just another way of looking at what we said
about queues in the second paragraph of this section.

4G

HIGHER ORDER SOFTWARE, fNC..- 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-890t ,

Formally, then, we replace each of Robinson's ordered (P,M)

pairs with an ordered pair (D,T), where D is a set of data

types replacing the "abstract machine" " and T is a set of de-

composition trees replacing the set of "abstract programs" P.

Robinson's levels of abstraction gets replaced with a data level

of HOS. For simplicity, we will assume that the data levels

are linearly ordered, in order to preserve the analogy that

we are developing with Robinson"s account of the SRI method-

ology, but, in fact, only a partial ordering is really neces-

sary, as long as there is a maximal data level in the ordering

that contains only one tree.

Higher data levels are related to lower data levels in that

the composition trees of each data level decompose the

primitive operations of the next higher data level in terms

'of the primitive operations of the lower data level For every

primitive operation f of a member of Di+ 1 (i>Q), in other words,

there will. be a decomposition tree in T. whose root is f and1

whose leaf nodes are primitive operations of a member of D..1
The primitive operations of the lowest-data level data types D0
are the primitive operations of the system, because these are

not decomposed at all, but are characterized only in terms

of their axiomatic interaction. The D. thus play the role1

of Robinson's Mi and the T. play the role of his P., as we
said we want them to do, but avoiding any suggestion of

implementation.

The simplest case, in which each Di contains a single data type

and in which T contains only one decomposed function f, corres-n
ponding to Robinson's single program P, is illustrated in

Figure 14 which clearly reveals the parallel between the HOS

7We are restricting our discussion of HOS here somewhat, in
order to maintain as close an analogy as possible with Robinson's
framework. Later we will expand our account by discussing HOS
in fuller generality.

~47

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (6171661-8900

. . . .

T f Data Type: On;
n / Primitive Operatlons:-

f / -- fn2

fnl3

n'mn nmAxioms nmn

T•m Data Type: D.
*I+2m i2 Primitive Opera+lIons:

T11f + 1 1/i + 1*

llf ., o L.yL

mi +1 ,' in terms _of Primitive Operations:

2k1' th'ese prisitive I f~i

f .f \ f f
L i 0 |A x iom : _j

)-7

T2 : fa fa riTy : Opeations:

0 73 J f2

.- - f2

_0'0

0 -. Data Type: D.;
./ n terms.o. Primitive Operations:A A2' these prim.itive f

- operations 1

f 12

f fi fl / "f \"

'ml 'mAxioms,

Data Type: 20;

20 f f Primitive Operations:

fCa'fOm fo
/

",O
e 2

01" 1 2O,m0 2Axioms: 2

Fibure 14

HOS Decomposition of Function f in terms of Primitive Operations
of Data Type DD

't 4 s

MiIbiHL.R ORDEhR S)O'- IWAKt, IrL. • 54, MAbbAL11UbItI Ib AVENUt LAMWKIUL~L, MASSACHUSETT-S 02139 •(617) 661-8900

framework we have developed here and the SRI framework illus-

trated in Figure 5. The direction of the arrows in Figure 14

denotes flow of decomposition, however, rather than flow of

implementation, as is the case in Figure 5. Everything in

Figure14 is strictly in the realm of specification and every

subspecification ("module"), i.e., data types, trees, and

data levels, is genuinely self-contained.

It is worth noticing at this point that Figure 14 suggests

a way in which a relatively simple proof-of-correctness pro-

cedure might be developed for software specified in HOS.

lobinson gives the following general account of how a proof-

of-correctness procedure is supposed to work:

The goal is to prove the correctness of a program P
with respect to an input assertion, , and an out-
put assertion, i. Verification requires the inser-
tion of inductive assertions {i}into the program's

flowchart, breaking the program into simple paths.
Each simple path has one entry and one exit and
between these a fixed number of executable statements.
For each simple path, a formula called a verification
condition (VC) must be stated and proved to be a
theorem. The validity of all the VCs for a program
is sufficient to demonstrate the partial correctness
of a program--i.e. for all inputs satisfying the input
assertion, the output assertion is satisfied if the
program terminates. Termination can be proved by
inductive assertions (usually different from those
used to prove partial correctness) that bound the
number of loop executions... (p. 274).

If we view Robinson's description in terms of Figure 14,

we get the following general picture. What we need in proof-

of-correctness is a set of intermediate points in the speci-

fication of a function; at which correctness assertions (verifi-

cation conditions) are stated and can be proven. In Figure 14,

such intermediate points appear to be provided automatically

at each data level, where the axioms on data types can be viewed

as assertions on the decompositions of higher-data level primitive

49

HIGHER ORDER SOFTWARE, INC., 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . 1617) 661- 900

operations into lower-data level primitive operations. The

input assertions 0 are provided by a statement of what, in

general, we intended the specified function to do. Spelling

out this procedure in detail will require further work, but

the general idea would seem to be clear.

so

HIGHER ORDER SOFTWARE, (NC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661.89(

5. HIGHER ORDER SOFTWARE IS SECURE SOFTWARE

Now we are in a position to return to our main topic of security.

Given the parallels that we have developed between the SRI

"specification" methodology and HOS, it would undoubtedly be

useful to examine the SRI security model in view of these

parallels and see whether we can shed any light on how that

model can be tightened up, as we did for Walter's. There is

good reason for not doing this, however. The SRI notion of

security is very similar to Walter's, as we can see from the

following description of that notion by Feiertag:

In a multilevel secure system there is a predefined
set of security levels. The security levels are com-
posed of clearances (or classifications) and category
sets, but the composition of the security levels is
an unimportant detail for purposes of this discussion
and will be largely ignored'. What is important is
that the security levels are partially ordered by the
relation "less than" represented by "<". Each pro-
cess in a multilevel secure system is assigned a
security level. The processes may invoke functions
that change the state of the system and return values.
Each function instantiation (i.e., a function with a
particular set of argument values) is assigned a
security level. A process may only invoke those
instantiations of functions that have been assigned
the security level of the process. A system is
multilevel secure if and only if the behavior of a
process at some given security level can be affected
only by processes at a security level less than or
equal to the given level.. Stated in terms of func-
tions, this says that the values returned by a
function instantiation assigned some security level
can be affected only by the invocation of function
instantiations at lower or equal security levels.
Stated in loose terms this means that information
can flow only upward in the system from processes
of lower security level to processes of higher security
level. [fei76, p. 1].

We already have enough at our disposal, however, to solve the

security problem altogether, without trying to reexamine

Feiertag's model in light of HOS Doing the latter can thus

be left simply as an interesting exercise for the reader.

8 Like Feiertag, Walter also informally characterizes a "classification" as

consisting of a "sensitivity level" and a "corpartment," but, also like

Feiertag, this distinction plays no real role in his formal security model.

Note that here, too, a secure model is characterized as one in which
infor-

mation can flow only upward.
H851

, HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

We arrived at our HOS model in Figure 14 by sticking fairly

closely to Robinson' s SRI model, as illustrated in Figure 5,

and showing that each component of his model could be made

completely free of implementation by replacing it with *the

corresponding HOS notion. What we found, essentially, was

that the step from implementation to spe cification can indeed

be made in somewhat the way Robinson wants, but only if we

reformulate his notions in non-implementation terms. To

capture successfully what Robinson is trying to express,

we have to replace his "abstract machines" with HOS data-type

specifications and his "abstract programs" with HOS function-

decomposition trees.

In fact, however, HOS is considerably more general than the

model in Figure 14. In particular, there is no reason for the

relationship between the primitive operations of successive

data levels to be related as directly as Figure 14 suggests.

In the figure, the primitive operations of one data level are

decomposed directly into the primitive operations of the next

lower data level. In general, however, there can be inter-

mediate operations on the lower data level that mediate this

decomposition.

As we noted earlier, a data level of HOS is an ordered pair

(D,T), where D is a set of abstract data types and T is a set

of decomposition trees. We also said the data levels are

linearly (or partially) ordered and that they are related in that

the decomposition trees of each data level decompose the

primitive operations of the next higher data level in terms of

the primitive operations of the lower data level. In the most

general case, however, the decomposition trees on one data

level also use the primitive operations of that data level at

their terminal nodes to define operations that do not appear

as primitive operations of the next higher data level. In

this case, there will be further decomposition trees between

the data levels whose roots are primitive operations of higher

52

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661 *8900

data levels and whose leaves are primitive or non-primitive

operations of next-lower data levels.

To put the point a little differently, a data level of HOS,

from the most abstract point of view, is nothing more than

an ordered pair (D,T), where D is a collection of sets and

T is a collection of mappings (mathematical functions).

What makes such an ordered pair an HOS data level, is the kinds

of constraints that are imposed on D and T by the HOS axioms

(and their consequences). Every member of D is not only a

set, but a set whose members behave towards each other in a

way specified in an HOS data-type specification. Every mem-

ber of T is not only a mapping, but a mapping that is decom-

posed in a well-formed HOS tree.

The mappings in T can represent completely general functions

.and do not have to be primitive operations on either their

own or any other data level. If a mapping f is non-primitive

on its own data level, then there is a decomposition tree that

connects it to the primitive operations of that data level.

Such a tree can be said to be horizontal, because it relates

primitive and non-primitive operations on a single data level.

There is also, however, a vertical tree that relates f to the
primitive operations of the next higher data level. In this

tree f is one of the leaves and the root is one of the primi-

tive operations of the higher data level.

What we get instead of the arrows in Figure 14, in other words,

is a retroflex step structure like the one in Figure 15.

Each line segment in Figure 15 represents a set of decomposi-

tion trees, some of which are horizontal (on a data level)

and some of which are vertical (between two data levels).

The arrows point away from the root nodes and toward the leaf

nodes of the trees they represent. Filled circles represent

primitive operations of a data level, while fil ed squares

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661.8900

f

z0

0LEGEND

0} = trees within a data level

o 4 = trees between data levels

at = non-primitive operations
Sof a data level

0 = primitive operations
of a data level

Arrow direction between
nodes indicates flow of
decomposition, away from

I root nodes and toward

--) leaf nodes of decomposi-
<tton trees.

00

Ficure 15

Retroflexed Step Structure of HOS Data Levels

54

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139. 617) 661-8900
L - " "Illrlr --- lilll f~I.

denote non-primitive operations of a data level. Movement

away from f produces increasingly decomposed operations (func-

tions, mappings, etc.), i.e., an increasing degree of primi-

tivity of the operations/functions involved. Movement towards

f produces increasingly abstract or complex (decomposable)

operations/functions, culminating in f itself.

In Figure 16, we elaborate this structure somewhat for a sys-

tem with three data levels. As in Figure 15, filled circles

in Figure 11 denote the primitive operations of a data level,

while filled squares denote non-primitive operations of a

data level. Open circles denote non-primitive operations that

are needed in the intermediate levels of a decomposition tree
9.

These are described in terms of the three primitive control

structures of HOS (composition, set partition, and class parti-

tion,as illustrated in Figure 13) or in terms of abstract

.control structures that are definable in terms of the three

primitive control structures, as we mentioned in Section 4.

Trees with solid branches are horizontal trees, which decom-

pose non-primitive operations of a data level in terms of

primitive operations of the same data level. Trees with

dashed branches are vertical trees which decompose primitive

operations of a data level in terms of non-primitive opera-

tions of the next lower data level. Note that primitivity of

operations is a relative notion, defined with respect to the

data level an operation is defined on.

Now we are ready to solve the security problem. Clearly, if

we are not interested, for some reason, in the data-level

structure of a particular f that has been decomposed as in

Figures 15 and 16, then we can "fix" f in space, as it were,

and "pull the rug out" from under the lowest data level, so

that the filled nodes in the diagram act as pivots and the

entire system stretches out into one gigantic tree structure,

as in Figure 17 . In conjunction with the HOS axioms, however,

- 9Note that HOS levels are defined relative to a controller,
or parent module, whereas Robinson's are not. See [Ham76a,b,cj.

55

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661.8900

f Primitive Operations

of Data Level 2

Non-primitive Operations
Lof Data Level I

~Primitive Operations" .

of Data Level I

I

Primitive Operations
of Data Level 0 (and

Non-rimiive peraionsof the System)

Figure 16
HOS Decomposition of Function f with Three Data Levels

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 (617) 661.-89n,)

--\g%

f

Primitive Operations
of Data Level 2

/ /
/

Non-Primitive Operations
of Data Level 1

Primitive Operations

of Data Level 1

,. /'.\

'I \ / \
, / \

Non-Primitive Operations

of Data Level 0

Primitive Operations of

Data Level 0 (and of the
system)

Figure 17

De-Retroflexed HOS Decomposition of Function f

37

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617 661-8900

this fact automatically provides us with the solution to the

security problem.

Consider Axioms 3 and 4, in particular (Figure 12). These are

the axioms that specify the access rights in an HOS system and

would thus be expected to have something to do with security.

Axiom 3 states that the access rights to the output of a func-

tion in a tree like that of Figure 17 are controlled by, and

only by, its parent node ("module", in the axiom), i.e., the

node immediately above it. Axiom 4, similarly, states that the

access rights to the input of a function in such a tree is

also controlled by and only by, its parent node. A given func-

tion can look at data only if its parent allows it to, and

it must dispose of its results, again, only as its parent allows

it to. It follows that the flow of control in an HOS system

is always from the top down.

The flow of information, however, is always from the bottom up.

A given node performs its function by having its offspring

nodes, i.e., those on the immediately lower level, perform

the function for it. This, in fact, is precisely what de-

composition is really all about. Decomposing a function is

just a formalized version of delegating responsibility.

If someone can perform a task all by himself, then there is

no point in delegating that task to subordinates. If respon-

sibility is delegated, then he performs his task precisely by

guaranteeing (via control' that his subordinates perform theirs.

Formally, the offspring nodes look at the data that the parent

allows them to (Axiom 4), perform their functions on that data

as input, and then dispose of that data as the parent requires

(Axiom 3), i.e., either by reporting it directly to the parent

or by passing it on to an appropriate sibling. In particular,

a given function has no idea what higher-level functions are

doing. It just chugs along, turning input into output, dis-

posing of that output as its parent tells it to. It is aware

of what its offspring (or perhaps, siblings) are doing, however,

5S

HIGHER ORDER SOFTWARE, INC., 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-890.
1.

because that is precisely where it get its input from. in

the first place.

The distinction between variables and values becomes very im-

portant here. Control is defined in terms of variables, but

information is defined in terms of values. A node controls

the access rights of its offspring to variables. The node

tells the offspring what variables they can look at and what

variables they must report back about. The offspring thus

get their variables from the parent. This is the sense in

which control flows downward. The parent node has no idea

what the values of those variables are, however, until it gets

those values from its offspring. The parent tells an offspring

what variable to look at; then the offspring looks at the vari-

able to find its value, operates on that value as input to

change it into a value of an output variable, and then reports '

,that value (either to a sibling or) back to the parent. Thus,
while parents tell offspring what variables they can look at

and assign., it is the offspring that tell the parents what the

values of those variables are. It follows that information

can flow only upward, precisely, in fact, because control

flows downward, as stated in Axioms 3 and 4.

Our proof that information flows only upward in an HOS system

required us to use the de-retroflexed tree in Figure 17, be-

cause the HOS axioms are stated in terms of trees (control

maps), not in terms of retrof lex trees, like the data-leveled'

structure in Figure 16. Since F'igure 11 is functionally equiva-
lent, however, to Figure 17, differing, in fact, only in its

arrangement on the page, our proof of upward information flow

is also valid'for Figure 16.

The significance of this-result cannot be overemphasized.

As we saw in connection with Walter's Mo, a secure system is

one in which the repositories (data) and agents (functions)

are ordered in such a way, and the access rights of the agents

j. 59

5 HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661.8900

(functions) to the repositories (data) are assigned in such a

way, that information can flow only upiard in the ordering. What

we have shown here, however, is that, if a system is specified

in accordance with HOS, then its functions (agents) and .data

(repositories) are so ordered, and the access rights of the func-

tions (agents) to the data (repositories) are so assigned, that

information does always flow upward in the ordering. In other

words, systems specified in HOS are automatically secure, without

the need for any further paraphernalia to guarantee the security

for us.

It follows that we have completely solved the security problem.

If software is specified in 1105, then it is secure. It is

that simple. Our proof of this fact also enables us to re-

fine our discussion of HOS somewhat, and it would be worth

while to pursue this opportunity a bit. We saw earlier that

systems have a dual character in two distinct senses. On

the one hand, a system is a function, since it performs a

function, and it is also a datum in that it exists at all.

On the other hand, a system consists of both data and func-

tions and these two components are inseparable. What our

proof of security makes clear, furthermore, is that each of

these components has a dual character as well, and again,

in two senses, when actually put together into a system.

A function in a system decomposition is a controller, because

it controls the behavior of its offspring, in accordance with

the axioms of 1105. It is also a performer, however, because

it carries out the mapping of its parent. Every function

plays both roles and the very fact that it plays one is the

reason it must also play the other 10 Data types also serve

in two capacities in system decompositions. Every data type

involved in a system decomposition provides both the input

of one function and the output of another. "In" and "Out"

are as diametrically opposed as any two things can be, but,

l1%rimitive operations are also controllers (potentially), because we can
always add a lower data level in which they are decomposed. Similarly,
the highest-level function in a system is also a performer (potentially),
because we can always use a system as a subsystem of some other system.

6C

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACWIISET-TS 02139 - (617) 661 -890.

again, we cannot have one without the other.

Our components are also dual-natured in a second way. On

the one hand, data have a constant aspect, as individual ob-

jects that can serve as inputs or outputs of functions, but,

on the other hand, they have a variable aspect, because they

exist as the members of data types. A given datum is an in-

dividual object itself, but it is also a representative mem-

ber of a data type that can serve as a value of a variable

of that type. This dichotomy enables functions to play a

dual role in systems in a second sense as well. In Walter's

terminology, a function can observe functions at a lower level

of its decomposition tree by receiving data values from output

variables of those functions and can modify functions at a

higher level of its decomposition tree by providing data values

to input variables of those functions.

On the one hand, therefore, functions act as agents, since

they can observe lower-level functions and modify higher-

level functions. What really gets observed and modified by

these agents are the output variables of the respective func-

tions with the modification occurring via the use of the input

variables, so it is the output variables that serve as the

repositories of the system. On the other hand, the input

variables also function as agents because it is they that

give the relevant values to their functions to use in modify-

ing the values of the output variables. In general, in other

words, it is the complete functions themselves--mappings, do-

mains, and ranges, with the latter two represented by variables--

that act both as agents and repositories in an HOS system.

It follows that we not only do not have to distinguish between

repositories and security classes, as we saw earlier, but we

do not really even have to distinguish between repositories

and agents either. Since a function all by itself already

61

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617)_661-8900

has a dual character, being made up of a mapping and two data

types, functions themselves can play both roles. When func-

tions occur in a tree, they can observe and modify other func-

tions and they can also be observed and modified by other func-

tions. Since they occur in a tree structure in any system,

the functions themselves, and therefore the "agents" and "re-

positories," which the functions, are, are partially ordered,

(and thus also pre-ordered), just as Walter wants them to be.

A function in a system is both an agent and a repository

and, since it occurs in a tree structure, can also serve as

its own security class. This is about as cozy an arrangement

as we could possibly want and, as we have seen quite clearly,

it is absolutely secure.

62

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-890,

6. SOFTWARE, SYSTEMS, SEMANTICS, A!ND BEYOND...

In most real scientific breakthroughs, the applicability,

usefulness, and explanatory power of a new theory goes well

beyond the restricted kind of problem it was originally

intended to solve. All such developments clearly exhibit

the contradictory aspects of similarity and difference, of

continuity and change. Major breakthroughs always bear

strong similarities to existing theories, but differ from

them in key respects whose logical implications turn out to

make all the difference.

These sorts of characteristic are clearly evident in the case

of HOS as an approach to systems theory. We have seen that,

while HOS was originally developed for the specification of

reliable software, it turns out to provide automatically

-the solution to the security problem as well. Many HOS concepts

look very much like the notions contained in other theories.

Very close examination reveals, however, that HOS differs

from other formulations in precisely the ways that are re-

quired by the problem the theories are trying to solve.

What results is a completely adequate methodology for the

specification of software systems that are reliable and

secure.

In fact, what results is much more than that. HOS seems

capable of providing insight into problems that are well

beyond its intended field of software engineering. There

is nothing in HOS, in other words, that requires us to

restrict its use to specifying software systems. As a

general systeis theory, HOS can be fruitfully applied in any

field in which systems can be seen to be playing a role.

George Miller has suggested to us (personal communication)

that HOS control hierarchies might be useful in accounting

for the behavior induced by operant conditioning, and we

have ourselves been investigating its usefulness as a tool

63

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

in analyzing natural language. The HOS distinction between
data and functions, for example, can be interpreted as pro-

viding a semantic model, in the sense of Wilson [Wil76].,

[Mill76]. Wilson's own semantic model, illustrated in Figure 18,

is considerably less general, recognizing seven modes of exist-

ence, which he calls "concept types": objects, properties,

relationships, events, actions, procedures, and sets. Such

a model would certainly be useful for many purposes, but its
limited generality cannot help but conceal significant generali-
zations that might help to simplify specific system specifi-

cations and suggest alternate implementations. Wilson's

model represents a number of possible implementations of

the HOS model at a lower level of generality. His "object

classes," "property classes," "relations/attributes," and

"sets," for example, could represent a particular selection

of data types, with "events," "actions," and "procedures"

corresponding to different classes of functions. The former,

after all, represent things that are (be), while the latter

represent things that do.

The data/function dichotomy could be distributed among Wilson's
seven "concept types" in other ways as well, but the question

that immediately strikes one on first coming across his model

is that of why he chooses these seven in the first place. The

problem with Wilson's semantic model, in other words, as a general

systems (or semantic) theory, is that it is essentially ad hoc
and, therefore, of limited generality. Actions certainly

constitute events, for example, so they could be subsumed
under them. Reversing direction, we could elaborate actions
further, distinguishing them into transitive and intransitive

actions, perhaps. Properties, similarly, could be taken to
be one-place relationships, as they often are. The point is
thdt Wilson's theory provides no natural mechanism with which
to make the plethora of such decisions that might arise in
specific cases of system design. The number of "concept

types" is stipulated to be seven, in the theory itself, and
that is that. HOS, in contrast, distinguishes only between

64
HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

+ m i

CONCEPT TYPES

Instances Classes (Abstracted from Instances)

objects object classes

properties property classes

relationships relations/attributes

events event classes

actions action classes

procedures procedure classes

sets set classes

CERTAIN KEY RELATIONSHIPS BETWEEN CONCEPTS

INSTANCE of/CLASS of

SUBCLASS of/SUPERCLASS of

COMPONENT of SUPERCOMPOSITE of (PART/WHOLE)

MEMBER of/SET MEMBERSHIP of

SUBSET of/SUPERSET of

Figure 18. Wilson's Semantic Model [Wi176, p. 7]

65

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 (617) 661 -8900

data and functions, while permitting any instance of either

to be also an instance of the other. Given this generality,

we can begin restricting things anyway we like for any parti-

cular problem: three special data types and four classes of

functions, two special data types and six classes of func-

tions, ten special data types and one class of functions, etc.

Once we let ourselves get more concrete than simply being

versus doing, in other words, there is no clear general

criterion for what our categories, modes of existence, or

concept types should be, because each application or class

of applications will favor a different choice. An adequate
general systems theory must be formulated at the highest level

of generality, so that no possibly desired choice of imple-

mentation will be ruled out, or made intrinsically more dif-

ficult, ahead of time.

By distinguishing only between data types and functions, in

other words, HOS lets each particular more or less concrete

application select exactly the specific data types and func-

tions it needs, rather than arbitrarily stopping the theory

short at a lower level of generality, and possibly ruling

out the optimal choice of data types and functions for a

particular application. The point here is not that Wilson's

semantic model is wrong, but that, unlike HOS, it is not

fully general, and, therefore, not fully adequate.

one final point remains to be made before we close. The

reason that system specification has been such a difficult

thing to figure out is that, as we have seen, a system is an

intrinsically contradictory object. On the one hand, a

system is a single object; on the other hand, it is made up

of man different objects. On the one hand, a system performs

a function on objects; on the other hand, it is an object on

which functions can beperformed. On the one hand, a system

consists of two distinct kinds of objects, functions and data;

on the other hand, functions can be data and data can be

66

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

functions, so only one sort of thing is really involved.

A datum can be an input to a function, but it can be so only

by being an output to a function, and vice versa. A function

controls other functions, but it also gets controlled by

another function. A datum is an individual object, with a

constant aspect, and also a representative of a data type, with

a variable aspect. Functions are defined in terms of vari-
ables, i.e., representatives of data types, but operate on

constants, i.e., individual data, and so on.

Given all these twists and turns on the road tc specification,

it is not surprising that so many have lost their way. The
uniqueness and power of HOS consists precisely in the fact

that it manages to resolve all of these contradictions in one

fell swoop and makes them comprehensible.

HIC.HEK ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 • (617I 661-QQ 0

REFERENCES

[Cus77al Cushing, S. "A note on equality in AXES data-type
specifications" (in preparation).

[Cus77b] Cushing, S. and Heath, W. "ARO operating system,"
ARO Memo #1. Cambridge, MA: Higher Order Software,
Inc. (hereafter cited as HOS, Inc.), April 7, 1977.

[Ham76a] Hamilton, M. and Zeldin, S. "AXES syntax description."
TR-4. HOS, Inc., December 1976.

[Ham76b] Hamilton, M. and Zeldin, S. "Higher order software--
a methodology for defining software." IEEE Trans-
actions in Software Encineerinc, Vol. SE-2, No. 1,
March 1976.

[Ham76c] Hamilton, M. and Zeldin, S. "Integrated software
development system/higher order software conceptual
description." Version 1. HOS, Inc., November 1976.

[Ham77] Hamilton, M. and Zeldin, S. "The manager as an
abstract systems engineer." TR-5. HOS, Inc., June
1977. (To be presented at the COMPCON 77 Fall Con-
ference, conducted by the IEEE Computer Society,
Washinaton D.C., September 1977.

[Lind76] Linden, T. A. "Operating system structures to support
security and reliable software." ACM Computing
Surveys, VIII, 4. December 1976, pp. 409-445.

[Mii176] Mills, H. D. and Wilson, M. C. "An introduction
to the information automat." Gaithersburg, MD:
IBM, May 7, 1976.

[Par72a] Parnas, D. L. "A technique for software module
specification with examples." Communications of
the ACM, XV, 5. May 1972, pp. 330-336.

[Par72b] Parnas, D. L. "On the criteria to be used in
decomposing systems into modules." Communications
of the ACM, XV, 12. December 1972, pp. 1053-1058.

[Robi75] Robinson, L., et al. "On attaining reliable soft-
ware for a secure operating system." Proceedings,
International Conference on Reliable Software, Los
Angeles. April 21-23, 1975.

[Robi77] Robinson, L., et al. "Proof techniques fcr
hierarchically structured programs." Comr.unications
of the ACM, XX, 4. April 1977, pp. 271-283.

619

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE. MASSACHUSETTS 02139 I6171 661-8900

[Walt75] Walter, W. C., et al. "Structured specification of
a security kernel." Proceedings, International Con-
ference on Reliable Software, Los Angeles. April 21-
23, 1975.

[Wil76] Wilson, M. L. "The information automat approach to
design and implementation of computer-based systems."
Gaithersburg, MD: IBM, April 1976.

70
HIGHER ORDER SOFTWVARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Section III

SOME DATA TYPES FOR OPERLATING SYSTEMS

by

S. Cushing and-W. Heath

In "AXES Syntax Description*", we provided algebraic specifications

for six intrinsic abstract data types: booleans, properties, sets,

naturals, integers, and rationals. We have now developed algebraic

specifications for a number of other abstract data types that are

of particular usefulness in the specification of operating systems

and other machine-dependent software. These include time, address,

and two varieties of priority queue.

Time is an essential data type in any information processing sys-

tem. It makes possible the scheduling of internal processes and

provides an interface between the computer and external events.

The essential characteristics of times are that they can be dis-

tinguished from each other (this is a universal characteristic

of all data types, as far as we can tell); that they are linearly

ordered, so that given two different times, one always precedes

the other; and that they support a notion of time flow.

The data type TIME can be specified in AXES as in Figure 1. In

the specification, Advance is the process of beginning at the

time indicated by the first argument and advancing by the amount

of time indicated by the second argument. Notafter is the rela-

tion that holds between two times if the first is earlier or

simultaneous with the second. Equals is the relation of equality.

Using Notafter, rather than something like Precedes, simplifies

the axioms considerably. Precedes can be defined later as an

operation.

Axioms 1-3 characterize equality simply as an equivalence rela-

tion, because the conceptual structure of the time notion is not

rich enough to support a specific equality relaticn, such as the

one on naturals or, as we will see, on cueues. Axioms 4-6 impose

a partial orderina on times and Axiom 7 makes the ordering total

(linear). Axiom 8 characterizes Notime as the tine fcr which

Advance has no effect. Axiom 9 says that Advance is commutative, I-

and Axiom 10 says it is associative. Axioms 8 and 9 together

NI. Hamilton and S. Zeldin, "AXES Syntax Descriptlon", TR-4.
Higher Order Software, Inc., Cambridge, MA, Dec. 1976.

' 1
HIGHER ORDER SOFTWARE, INc., 843 MASSACHUSETTS AVENUE . CAMBRILKL, MASSACHUSETTS 02139 • (617) 661-8900

I @ ia ' :- '& - iIi .* .i i ".

DATA TYPE: TIME;1

PRIMITIVE OPERATIONS:

tie3 = Advance(timel1time 2

boolean = Notafter(time1,time 2)

boolean = Equal(time1 ,time2)

AXIOMS:

WHERE t,t1 1 t 2 1 t3 ARE TIMES;

WHERE Notime IS A CONSTANT TIME;

1. Equal(t,t) = True;

2. Equal(t1 ,t 2) Equal(t 2 t 1)

3. Entails(Eaual(t1 ,t 2) & Equal(t 2 t 3) Equal(t1 ,t 3) True;

4. Notafter(t,t) = True;

5. Entails(Notafter(t 1 t 2) & Notafter(t 2 t 3) Notafter(t1 ,t3))

True;

6. Entails(Notafter(t 1,t 2) & Notafter(t 2 t 1) Equal(t11 t 2)

True;

7. Notafter(t 1 t 2)! Notafter(t 2 #'t 1) True;

8. Advance(t,Notime) = t

9. Advance(t11 t)= Advance(t2,t1

10. Advance(t1 ,Advance(t2 t) Advance (Advance(t1,t) ,t)

11. Notafter(Advance(tt 2)t t1) Notafter (t 2 fNotime);

END TIME;

Figure 1

Data Type TIME

2

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

guarantee that Notime behaves both as a time origin and as a null

tire increment. Axiom 11 relates Advance to the linear time order-

ing.

Addresses are necessary in computer-dependent software in order

to keep track of storage locations. Addresses can be implemented

as coordinates in a reference frame, as naturals indicating an

order in a list of storage cells, as regions in a map, or as

any number of other things, but all of these are irrelevant to

the characterization of addresses as addresses. Addresses

need not even be ordered, as long as we can tell which address

is which. The regions of a map, for example, serve satisfactorily

as addresses as long as we can tell which region on the map cor-

responds to which region in the mapped area, as in Figure 2:

CAMBRIDGE
CMRDEWATERTOWN I

WORLD

FIGURE 2

ADDRESSES IMPLEMENTED AS MAP REGIONS

T3

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS019•(7 6-90

i0

Size and shape can be transformed beyond recognition, but the

map regions still serve adequately as addresses as long as the

transformation is topological and the correspondence is preserved.

The only requirement that needs to be made on addresses, in fact,

is that we be able to tell them apart. This gives us the AXES

specification in Figure 3. Since all we need is to be able to

tell two addresses apart, equality is the only primitive opera-

tion. As with data type TIME, we characterize equality simply

as an equivalence relation, because the conceptual structure

of the ADDRESS type will not support a more specific relation.

Two forms of priority queue have been characterized algebraically

and are now available for use in system specification. The dif-

ferences between the two forms of queue, the strict priority

queue and the flexible priority queue, are illustrated in Figure

4. Each of the queues in Figure 4 contains six items (presum-

ably, jobs or processes), with corresnonding items having equal

priorities. Flow through both is from right to left, with the only

exit point in each aueue being at the left of the queue. The queues

differ only in the points at which items may enter the queue.

In Figure 4a, entrance is strictly by priority; an item may enter

the queue only at a point to the left of all items of lower

priority and to the right of all items of the same or higher

priority. Giver a particular queue or state of a queue, a new

item's entrance point is determined entirely by its own priority.

No options are available.

In Figure 4b, entrance is bounded by priority, in the sense that

an item may not enter the queue at a point to the left of any

job of the same or higher priotity; it may enter the queue at

any point to the right of the rightmost item that has the same

priority, if there is one, or the item of next highest priority,

otherwise. Given a particular queue or state of a queue, a new

item may enter anywhere to the right of the point determined by

its priority.

4

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

DATA TYPE: ADDRESS;

PRIMITIVE OPERATIONS:

boolean2 Equal (address11 ~address2)

AXIOMS:

WHERE A1 ,A 2 ARE ADDRESSES;

1. Eaual(A1 ,A 1) = True;

2. Equal(A1 ,A 2) = Equal(A 2 fA 1)

3. Entails(Equal(A 1 A 2) & Eaual(A 2 1A 3) Equal(A1 ,A 3) True;

END ADDRESS;

Figure 3

Data type ADDRESS

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY

17-24 16 12-15 9-11 3-8 1-2

1 I I I____

PRIORITY PRIORITY I PRIORITY PRIORITY I PRIORITY PRIORITY

24 I 16 I 15 I 11 I 8 I 2II I I
I I __I_ __ _ !I _ I_ _ _

(a) STRICT PRIORITY QUEUE: Entrance strictly by priority; arrows show
exit point, entrance points, and direction of flow through queue.

PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY PRIORITY

17-24 16-24 12-24 9-24 3-24 1-24

SI I I I

I I I I I

PRIORITY I PRIORITY I PRIORITYI PRIORITYI PRIORITY I PRIORITY

24 16 15 11 8 2I I i l I I2
I,, nJ I I I

(b) FLEXIBLE PRIORITY QUEUE: Entrance bounded by priority; arrows show
exit point, entrance points, and direction of flow through queue.

FIGURE 4

TWO FORMS OF PRIORITY QUEUE

6

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

With a strict priority queue(Figure 4a), we automatically know

where an item must enter, once we know its priority and the

current state of the queue. With a flexible priority queue

(Figure 4b), we know the leftmost point at which an item may

enter, when we know its priority and the state of the queue, but

we must then specify on some basis other than priority where to

the right of that point we actually want it to enter.

It must be stressed that the "entrance points" in Figure 4 are

abstract, in the zense that they might not actually appear in a

particular implementation of data type PRIORITY QUEUE. A priority
aueue may be implemented in a form that actually has different

entrance points, as in Figure 4, but it may equally well be im-

plemented in a form that has only one entrance point at the right,

as in a simple queue, with entrance being followed by a process

that rearranges the queue in the appropriate way in accordance

with the priority of the entering item. How the data type is

implemented in an actual machine is irrelevant to the character

of the data type as a data type. The important thing is that, once

the queue-entering process, whatever that may involve, is com-

pleted for a particular entering item, the items are arranged

in the queue correctly accoreing to priority, along the lines

of ligure 4.

Figure 5 contains an AXES specification of the flexible priority

queue and Figure 6 contains an AXES specification of the strict

priority queue. To make comparison easier, we have used the same

notation for both. If both queues are actually used in a system

specification, each should be provided with its own notation

to avoid confusion. For example, Front could be called Flex-

Front for the flexible priority queue, and SFront for the strict

priority queue. Note that Priority is an operation defined on

type JOB, which is not included in this memorandum.

The operation Add in these specifications is that of adding an

item to a queue. Note that the two specifications differ only

in that the Add operation for the flexible priority queue re-

quires a natural numbern as one of its arguments, whereas the

S7

I HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900
,4,

DATA TYPE: QUEUE;

PRIMITIVE OPERATIONS:

queue2 = Add(natural,job,queue 1)

quieue 2 = Remove(queue 1);

job = Front (queue);

boolean = Equal(queue 1 ,queue 2);

natural = Size(queue);

AXIOMS:

WHERE Nullq IS A CONSTANT QUEUE;

WHFRE qT,q1 ,q 2 ARE QUEUES;

WHERE j~j1 ,j 2 ARE JOBS;

WHERE Capacity IS A CONSTANT NATURAL;

'l. Front(Nullq) = REJECT;

2. Front(Add(n,j,q)) = K REJECT('(~) AND 2 N Front(0)

3. Remove(Nullq) = REJECT;

4. Remove(Add(n,j,q)) = K REJECT(' 1 jq)AD 2q

AND Add(n, 3j,Remove(3q));

PARTITION OF (j,q) IS

2 (j,q)f<(n,Priority(j))&(Equal(g,Nullq).!>(Priority(i)I

Priority (Front (q)))) & Size (q) <Capacity,

(,q) j<(n,Priority(j))&Not(Equal(q,Nullq))&<(Pr.ority(j),

Priority (Front (q) &Sizc (q)<Capacity;

Figure 5

Data Type FLEXIBLE PRIORITY QUEUE

8

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

5. Equal(Nullq,Nullq) = True;

6. Equal(Nilllq,Add(n,j,q)) = False;

7. Equal(Add(n,j.,q),Nullq) = False;

8. Equal(Add(nl1 jl1g1), Add (n21 j21 q 2)) Equal(n 1 n 2) & Equal (jl1 j2)

& Equal(ql1g2);

9. Size(Nulla) = Zero;

10. Size(Add(n,j,q)) = Succ(Size(3 q)) AND K RJECT(4q);

PARTITION OF q IS

3 !(Size (q) , Capacity) ,

-'Si ze(q), Capacity);

END QUEUE;

Figure 5

Data Type FLEXIBLE PRIORITY QUEUE (con't)

9

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

DATA TYPE: QUEUE;

PRIMITIVE OPERATIONS;

queue 2 = Add(job,queue 1)

queue 2 = Remove(queue1)

job = Front (queue) ;

boolean = Equal (queue 1 ,queue 2)

natural = Size(queue);

AXIOMS:

WHERE Nullq IS A CONSTANT QUEUE,

WHERE Capacity IS A CONSTANT NATURAL;

1. Front(Nullq) = REJECT;

2. Front(Add(j,q)) = j AND Front(2q) ANDKRECT3q)

3. Remove(Nullq) =REJECT;

4. Remove(Add(j,q)) = qAND Add(j,Remove(2r) AND KRJC)

PARTITION OF (j,q) IS

1(j,q) (Equal(q,Nullq)!>(Priority(j) ,Priority(Front(q)))) &

Size (q) <Capacity,

2 (j,q) j(Not(Equal(q,Nullr))&<(Priority(j) ,Priority(Front(q))))

& Size (q) <Capacity,

3(j q~ Size (q) >Capacity;

5. Equal(Nullq,Nulla) = True;

6. Equal(Nullq,Add(j,qr)) = False;

7. Equal(Add(j,q),Nullq) = False;

8.. Equal(Add(jl1 ql), Add (j2,q 2)) =Equal (jl1 j2)& Equal(ql.q 2;

9. Size(Nullcr) = Zero;

10. Size(Add(j,q)) = Succ(Size 1a)) AND Succ(Size(2q))AND KREET q)

END QUEUE;
Figure 6

Data Type STRICT PRIORITY QUEUE
10

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661 -890.)

strict priority queue does not require such an argument. The

number n tells us where in the queue an item (job) is being

inserted. In a flexible priority queue, n is bounded above by

the priority of the entering item, but is not bounded below.

In a strict priority queue, n is always identical to the priority

of the entering item and so does not have to be stated.

The Remove operation removes the "leftmost" item (i.e., the front

item, the one next in line to the exit point) from the queue.

The Front operation tells us which item that is. Equal tells

us when two priority queues are the same and Size tells us the

number of items in a queue.

Axioms 1 and 2 characterize the interaction of Front, Add, and

Nullq, the empty queue. Axiom 1 says that Nullq has no first

item. Axiom 2 in Figure 5, along with the set partition, says

that we cannot add an item to a queue at the position determined

by priority n if n is greater than the item's own priority.

Note that this condition is absent from Figure 6. In both figures,

Axiom 2 says that if we add an item to a priority queue at an

(the) appropriate position, then the new front item is the added

item, if the old queue was empty or had a front item of lower

priority than the added item, and is the old front item, other-

wise.

Axioms 3 and 4 characterize the interaction of Remove, Front, and

Nullq and are predictably similar to Axioms 1 and 2. Axiom 3

says that we cannot remove an item from the empty queue. Axiom 4

in Figure 5 says essentially the same thing as Axiom 2, if n is

greater than the priority of the entering item. Again, this

condition is absent from Figure 6. In both figures, Axiom 4

says that adding an item to a aueue and then removing the front

item from the new queue produces the old queue if the old queue

was empty or had a front item of lower priority than the added

item, and produces the same result as adding the new item to the

old queue with its front iter already removed, other-vise.

iN

£
HIGHLR ORDLR SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139 •(617) 661-8900

.~- -

Axioms 5-8 characterize equality specifically for priority queues.

Although the axioms for an equivalence relation follow from

Axioms 5-8, the latter axioms narrow this relation down even fur-

ther to equality. The conceptual structure of-the notion of

priority queue, unlike that of time or address, is rich enough

to support such a characterization, as the axioms show. Axiom 5

says that Equality holds of Nullq and itself while Axioms 6 and 7

say that Equality fails to hold of Nullq and any queue that arises

from the Add operation. Axiom 8 says that Equality holds of two

queues that arise from Add, if and only if the added items were

equal, were added to queues that were themselves eqtual, and w'ere

added at the same position in those queues.

Axioms 9-10 finish out our specification of priority queues by

characterizing the notion of queue size. Axiom 9 says that the

empty queue is of size zero, while Axiom 10 says that adding

an item to a queue increases its size by one, unless the original

queue was already filled to capacity, in which case the ADD

operation REJECTs. Note that Axioms 2 and 4 tell us, through the

Size-Capacity relationship in the partition, that both Front and

Remove REJECT when applied after Add, if the original queue was

too large to be added to in the first place, i.e., if it was al-

ready filled to capacity.

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

PIT.

Section IV

SOME SPECIFICATIONS FOR THE

OPERATING SYSTEM OF THE

APOLLO GUIDANCE COMPUTER (AGC)

by

W. Heath

is

* TABLE OF CONTENTS

SECTION PAGE

1.0 INTRODUCTION 1

2.0 WAITLIST SYSTEM SPECIFICATION. 9

2.1 Waitlist System Data Types......

TASKQUEUE 12

TASKENTRY. 17

2.2 Waitlist System Operations 19

Preceeds?. 22 I
Reverse. 22
Regress. 22

NewTaskEntry 23

Update Waittime. 23

PopFirstTask 23

CounterInterrupt. 24

T3rupt 25

Taskover 26

Longcall 26

Longcycle. 27

Taskcall 27

35.0 EXECUTIVE SYSTEM SPECIFICATION. 29

3.1 Executive System Data Types. 31

JOBQUEUE. 32

JOBENTRY. 39

PRIORITY 42

T1JPLE. 43

STACK. 45

fil(uHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAM6RIDGE, MASSACHUSETTS 02139 .(617) 661-8900

TABLE OF CONTENTS (continuation)

SECTION PAGE

3.2 Executive System Operations. 47

Findvac. , .. 49

Novac 49

Nov'ac25

New JobEntry 50

ChangeJob 51

Jobsleep 51

GoToSleep. 52

Jobwake S2

WakeUp. 2

Set_-Sleep_State. 53
AsgnLoc&Bankset 53

Priochng 54

Endofjob 55

New-Job Yet7 . 56

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSET-TS 02139 .(617) 661 *8900

1.0 INTRODUCTION

What follows is the HOS specification of the operating system of.the

Apollo Guidance Computer (AGC). The AGC is a real-time control computer

used to control the Apollo spacecraft.

The Apollo Guidance Computer is the heart of the Guidance,
Navigation and Control System for the Apollo Lunar Module (LM)
and Command Module (CM). The software maintains positional
knowledge of the vehicle in space, determines the path to a
desired destination, and steers the spacecraft along that
path by sending commands to the engines. It communicates
with the astronauts and the ground, and monitors the per-
formance of the GN&C System. Mission programs, such as
rendezvous, targeting and landing, control some of the
phases of an Apollo flight.

Storage and Manipulation of Computer Instructions

The AGC contains two distinct memories, fixed and erasable,
as well as various computer hardware. The fixed memory is
stored in a wire braid which is manufactured and installed
in the computer. This memory cannot be changed after
manufacture and it can only be read by the computer. Fixed
memory contains 36,864 "words" of memory grouped into 36
banks. Each word contains 15 bits of information (a sixteenth
bit is used as a parity check). The word may contain either
a piece of data, or an instruction which tells the computer
to perform an operation. A series of instructions forms a
routine or a program. In addition to storing programs, the
fixed memory stores data such as constants and tables which
will not change during a mission.

The erasable memory makes use of ferrite cores which can be
both read and changed. It consists of 2,048 words divided
into 8 banks. Erasable memory is used to store such data
as may change up to or during a mission, and is also used
for temporary storage by the programs operating in the computer.

Included in the hardware is a Central Processing Unit (CPU).
The CPU performs all the actual manipulation of data, accord-
ing to the instructions designated by a program. The 34
possible machine instructions include arithmetic operations
(add, multiply, etc.) as well as logical operations, sequence
control, and input/output operations. Also included are
a limited number of "double-precision" instructions which
permit two words of data to be processed as a single "word"
of greater precision.

)

S 1.

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

The memory cycle time (MCT) in the AGC is 11.7 1.sec. Most
single-precision machine instructions (e.g., addition) are
completed in two MCTs; most double-precision machine instruc-
tions are completed in three MCTs. The unconditional transfer-
control instructions, however, operate in one MCT.

To be used as an instruction, a computer word must specify the
operation to be performed and give the location of the data
to be operated on. However, a 15-bit word does not contain
enough information to specify 34 operations and 38,912 fixed
and erasable locations. In fact, 15 bits cannot even specify
38,912 locations unambiguously. It is for this reason that
both the fixed and the erasable memories are grouped into
banks. An instruction may specify any address within its own
bank, and may also address the first four banks of erasable
and the first two banks of fixed memory. Access to other
banks is accomplished using bank-selection registers in the
CPU. In many cases a program exists entirely within one bank of
memory, in which case bank switching is not required.

Many of the tasks the AGC performs can be adequately carried
out by machine instructions. However, for extensive mathe-
matical calculations in such areas as navigation,the short
word length of the AGC presents difficulties. It limits the
number of instructions available, the range of memory that can
be addressed without switching banks, and the precision with
which arithmetic data can be stored and manipulated. To
alleviate these problems, nontime-critical mathematical cal-
culations are coded in "interpretive language" and are processed
by a software system known as Interpreter. Each Interpreter
instruction is contained in two or more consecutive computer
words. The increased information available allows more possible
instructions and a greater range of memory addressability without
bank switching. In fact, with some exceptions, all of erasable
memory and fixed memory may be addressed directly. Among the
available Interpreter instructions are a full set of operations
on double-precision quantities, including square root and
trigonometric functions, some triple-precision instructions,
and a set of vector instructions such as cross product, dot
product, matrix multiply, and vector magnitude. Interpreter
routines translate an Interpreter instruction into an equiva-
lent series of machine instructions to be performed by the CPU.
Thus, one Interpreter instruction may be equivalent to many
machine instructions, and much storage space is saved in the
computer. The Interpreter also contains* software routines
for the manipulation and temporary storage of double- and
triple-precision quantities and vectors.

2

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

Interpreter expands the processing capabilities of the CPU
hardware. However, its operation is quite slow, since the
CPU must perform all the actual operations, and much time is
spent in the translation of instructions and the manipulatidn
of data. Although processing time is slower, much storage
space is saved in fixed memory by the more powerful Inter-
preter instructions; thus, the vast majority of nontime-
critical mathematical computations are coded using interpre-
tive language.I

Timing and Control of the Computer

Two of the more stringent requirements placed upon the AGC are
the need for real-time operations and the necessity for time-
sharing of multiple tasks.

Certain computer functions must occur in real time. For
example, certain input data must be stored or processed
immediately upon receipt; and outputs, such as those which
turn the jets on and off, must occur at precisely the correct
time. An interrupt system causes normal computer operation
to be suspended while performing such time-critical tasks.

Several programs, which are less time-critical, may all be
required during a phase of the mission. Time sharing between
these programs is controlled by a software executive system 1
which monitors the programs and processes them in order of
priority. The Executive can stop one job when a higher
priority job is necessary, then resume the low..priority job
when time is available.

Interrupt System

To permit quick response to time-dependent requests, the AGC
has a complex interrupt structure. There are two classes of
interrupts, counter interrupts and program interrupts. Counter
interrupts have the highest priority of all AGC operations.
Counters are locations in erasable memory which can be modified
by inputs oiaLginating outside the CPU. Some counters are used
as clocks, whilre others interface with spacecraft systems to
receive or transmit sequences of data pulses. The counters
respond to a set of involuntary instructions called counter
interrupts, which may increment, decrement, or shift the contents
of the counters. A counter interrupt suspends the normal
operation of the CPU for one MCT, while the instruction is
being processed. Except for the short time loss, the ongoing
program is not affected by the counter interrupt; in fact, it
is not aware that the interrupt has occurred. These interrupts
are used solely for counter update and maintenance; their
priority assures that no information will be lost in the counters.

4. 3

L HIGHER ORDER SOFT% ARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661.8900

Two counters, designated TIMEl and TIME2, form a double-
precision master clock in the AGC. TIME1 is incremented
at the rate of 100 counter interrupts per second. Overflow
of TIMEl triggers a counter interrupt to increment TIME2.
Since total time that must elapse before TIME2 overflows
exceeds 31 days, TIME1 and TIME2 are thus able to keep
track of total elapsed mission time.

The remaining clock-counters, designated TIME3 through
TIME6, measure time intervals needed by the AGC hardware and
software. For example, autopilot computations must be pro-
cessed periodically whenever the autopilot is in use. Before
reaching completion, these computations preset the TIMES
counter so that it will overflow at a specified time in the
future. When TIMES overflows, a signal sent to the CPU causes a
"program interrupt" which interrupts the program in process
and begins the autopilot computations once again.

Program interrupts have lower priority than counter interrupts,
but greater priority than normal program operation. Unlike
counter interrupts, the purpose of program interrupts is to
alter the normal processing sequence. There are 11 program
interrupts; they may be triggered by a clock-counter overflow,
as in the example given above, or by externally generated
signals, such as the depression of a key on the Display and
Keyborad (DSKY) by an astronaut. The occurrence of a program
interrupt causes the computer to suspend normal operation at
the end of the current instruction. The current CPU data are
saved, the computer is placed in interrupt mode, and control
is passed to a preassigned location in fixed memory. This
preassigned location is the beginning of a program which per-
forms the action appropriate to the interrupt. While the
interrupt program is running, the computer remains in interrupt
mode, and no additional program interrupts will be accepted,
although counter interrupts can still occur. (Requests for
other program interrupts are stored by the hardware and pro-
cessed before returning to normal operations.) At the con-
clusion of the interrupt program, a "resume" instruction is
executed. If there are no other program interrupts, the CPU
is taken out of interrupt mode, the original contents are re-
stored, and the program returns to the point at which it was
interrupted. One program interrupt (restart) takes precedence
over all the others, and can even interrupt an interrupt. It
results from various kinds of computer malfunctions.

A computation which takes place by means of a program interrupt
is called a task. Since tasks may not be interrupted, they
must be short to avoid delaying other tasks. This speed require-
ment precludes the use of interpretive language.

4

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

A job in process must periodically call Executive to scan the
list of waiting jobs, thus determining if any scheduled job
has a priority higher than itself. If so, the job currently
active is suspended and the higher priority job is initiated.
To permit suspension of a job and subsequent resumption at a
point other than its beginning, the working storage associated
with the job is saved when the job is suspended and restored
when the job is reinstated. A suspended job is returned to
the job list and is not reinstated until it has the highest
priority on the list. Eventually, a given job will run to
completion, at which time it is removed entirely from con-
sideration. When all jobs on the list have run to completion,
a "DUMMYJOB" with zero priority constantly checks to see if
new jobs have appeared. (The computer also performs a self-
check.)

The relative importance of a job may change for various
reasons. When this is the case, Executive changes the priority
list and rechecks the list for the job of highest priority.
Many times it is desirable to purposely suspend the execution
of a job, but not to terminate it completely. Temporary
suspension is desirable to await an event such as the input
or output of data, or for the availability of a nonreenter-
able subroutine currently in use. To accomplish temporary
suspension, Executive saves the job's interrupted registers
and sets its priority to a negative value. Because the
interrupted job has a negative priority, DUMMYJOB has priority
over it. As a result, the job is, in effect, suspended in-
definitely. Eventually, Executive is called to restore the
job, usually by the event for which the job is waiting.
Executive restores the original priority and again checks the
list for the highest priority job. (This process is called
"putting a job to sleep.")

Waitlist allows any program to schedule a task to occur at a
specified time in the future. The TIME3 clock interrupts the
job in process at the correct time and initiates the task. (As
mentioned before, tasks initiated by the other program inter-
rupts are not controlled by the Executive.)

To schedule a new task, Waitlist requires the starting address
of the task and the amount of time which must elapse before
execution. Waitlist maintains a list of tasks waiting to run
in the order in which they will be performed and a list of
time differences between adjacent items on the task list. It
determines when the new task will run in relation to others
on the list, placing it appropriately in the list.

6
HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

One class of tasks is initiated by overflow of the time
counters TIME3, TIME4, TIMES, and TIME6. These are con-
sidered time-dependent tasks. The TIMES interrupt, described
described above, initiates autopilot computations at
precise periodic intervals. TIME6 controls the timing of
the autopilot RCS (Reaction Control System) jet firings.
TIME4 initiates a series of routines which periodically
monitor the IMU, radar, etc., and process input/output
commands. The TIME3 counter is under the control of the
software executive system (described below). It is
available for general use by any program needing to
schedule a task for a specific time.

A second class of tsks is initiated by interrupts caused
by external action. For example, depressing a DSKY key
initiates a task that begins processing DSKY readings
and storing the information for later processing. Telem-
etry and the radar also cause interrupts that initiate
tasks to receive or transmit the next data word.

Software Executive System

Computation in the AGC is managed by a software executive
system comprised of two groups of routines, Executive and
Waitlist. This system controls two distinct types of
computational units, jobs and tasks. In its normal operat-
ing mode, the computer processes jobs. These are scheduled
by the Executive, according to a priority system. The
Waitlist uses the TIME3 interrupt to schedule tasks for a
specific time in the future. (Tasks originated by the other
program interrupts take place independently of the software
executive system.)

Most AGC computations are processed jobs. Division of a
program into discrete jobs is at the discretion of the pro-
grammer, who also assigns a priority to each job indicative
of its importance. The Executive can manage up to seven
jobs (eight in the LM program) simultaneously.

To schedule a job, the Executive places the job's priority
and beginning location on a list, assigning the job a set
of working storage locations called a core set. In addition,
if a job r~equires a larger working storage, as in the use of
interpretive language, a second area, called a VAC area,
may be assigned. The Executive is capable of maintaining

seven core sets (eight in the L! program) and five VAC areas
as each is assigned to a job, and of redesignating them as
available when the job is finished.

5

HIGHER ORDER SOFTWARE. INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE. MASSACHUSETTS 02139 • (617 661-8900

The TIME3 counter counts the time to the first item on the
list. When this time arrives, the TIME3 program interrupt
occurs. TIME3 is immediately set to overflow when the time
has elapsed for the next task on the list, and all tasks and
times move up one position on the list. The computer re-
mains in interrupt mode until the task is completed. It is
then free to process other interrupts or return to the
original job.

Since TIME3 is a single precision AGC word (15 bits) that is
incremented 100 times a second, Waitlist can process tasks up
to 162.5 sec in the future. For longer delays, a routine
called LONGCALL processes a single task, the repeated calling
of Waitlist. LONGCALL can schedule tasks for as long as 745
hours in the future, a time span larger than an entire Apollo
mission.

Sequence Control

In normal AGC operation, the Executive maintains a constant
background of activity, while program interrupts break in for
short, time-critical bursts. The execution of a job is sub-
ject to numerous interruptions. A counter interrupt may
occur after the completion of any instruction. Program
interrupts stop the job in process. While the computer is
in interrupt mode, any further program interrupts are saved
by the hardware and processed one at a time before returning
to the job. Under control of the Executive, high-priority
jobs also steal time from a job in process. This control
system of interrupts and priorities ensures that in times
of heavy load, the most critical- computations for the mission
will be processed first.

Normally, the CPU does not stop during periods of low activity.
If no jobs or tasks are being executed, the CPU executes a
short loop of instructions (DUMMYJOB) which continually looks
for jobs to initiate. Periodically, TIME4 overfolows, initiat-
ing a task to monitor various GN&C subsystems. If an auto-
pilot is in operation, TIMES triggers other interrupts for
autopilot functions. In addition, periodic counter interrupts
will occur as counter input is received and clock counters
are updated. More extensive computer activity awaits action
by the astronaut.*

Abstracted from Johnson, M.S. and Giller, D.R. "MIT's Role in
Project Apollo", The Software Effort, vol. 5. Draper Laboratory, Inc.,
Report R-700, Final Draft, March 1971.

• 7

HIGHER ORDER SOFTWARE, I'NC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900
-

The HOS specification of the AGC operating system has been partitioned

into two sections. The first is the Waitlist System which controls the

execution of tasks. A task, as in the actual AGC software, is a short

process which runs to completion once started and is scheduled according

to a specified time of exectution. The second section of specifications

is the Executive System which controls the execution of jobs. A job,

again identical to the AGC definition, is a process of arbitrary length

which is established as a job when its function is desired and is

subsequently scheduled according to a priority that is specified for

the process, and is subject to interruptions for higher priority jobs.

Section 2 contains the HOS specification ot the Waitlist System. Section 3

contains the Executive System specifications.

A comment on notation: The symbols "" and "!" have been used herein
to denote the boolean infix operators "AND"' and "OR", respectively.

8

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

I ,,

2.0 WAITLIST SYSTEM SPECIFICATION

The Waitlist System specification consists of a set of data type
specifications and a set of operation specifications. Section 2.1

contains the data types and section 2.2 contains the operations.

The use of the data types and service operations (those operations

accessible by the user) is outlined below.

Waitlist System Data Types:

TASK_QUEUE: A queue of requests for task

invocations. Task invocations are

ordered in the queue according to

their requested execution times. The

queue has a finite size and is updated

by the Waitlist System operations.

e TASK ENTRY: A storage device to perserve, for

entry into a TASKQUEUE, a task

identifier and the time delay for the

execution of the task.

Waitlist System Service Operations:

* Enter Task: A primitive operation on the data

type TASKQUEUE. Enters a task

invocation request into the queue

for execution after its specified

time delay. (Corresponds to the AGC

program entries: WAITLIST and TWIDDLE,

where TWIDDLE is a different imple-

mentation using a shorter form of

address reference.)

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Waitlist System Service Operations (continued):

* Longcall: Invoked to request the execution of

a task with a greater time delay than

the maximum allowable by the

TASK QUEUE. (Corresponds to the AGC

program entry: LONGCALL.)

e Taskover: Must be invoked at the completion of

each task to determine if another

task is waiting for immediate execution.

(Corresponds to the AGC program

entry: TASKOVER.)

* Counter_

Interrupt Invoked to synchronize the Waitlist

System with real time. The AGC

erasable register TIME3 is used to

keep track of the time delay until the

next required task execution. This

information has been incorporated into

the TASK_QUEUE data type as the DeltaT

value of the first TASKENTRY in the

queue. In the specification, this

operation is invoked to decrement and

test this time delay value.

(Corresponds to a hardware counter

interrupt in the AGC.)

a T3rupt Invoked to service the TASKQUEUE and

present the task for execution when

Counter Interrupt indicates that a task

is ready to by executed. (Corresponds

to the AGC program entry: T3RUPT, which

is a task itself that is executed in the

program interrupt caused by the overflow

of TIME3.)

10
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-89

2.1 Waitlist System Data Types

The data type specifications of the Waitlist System are contained

herein. Each specification contains the AXES syntax for the spec-

ification and appropriate explanations of the primitive operations

and the axioms of the data type.

IE

12.1

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139 • (61"7) 661-8900

DATA TYPE: TASKQUEUE(n)

PRIMITIVE OPERATIONS:

task__queue 2 = EnterTask(task_queue1,task-entry)

task-queue 2 = DiscardTask(task-queue1)

task-entry = FirstTask(task_queue)

natural = Size(task_queue)

natural = Capacity(task_qRueue)

boolean = Equal(task_queue1 ,task__queue2)

AXIOMS:

WHERE n,n1 ,n2 ARE NATURALS;

WHERE EmtyTskQn IS A CONSTANT TASKQUEUE (n);

WHERE e1 9e,se,ne ARE TASKENTRYS;

WHERE q1,q 2 ,,q,sq,nq,qi,sqi,nqi ARE TASKQUEUES;

WHERE DummyTask IS A CONSTANT TASK-ENTRY;

/*1*/ FirstTask(EmtyTskQn DummyTask;

1*2*1 DiscardTask(EmtyTsk%) EmtyTskQn;

/**/ Size(EmtyTskQ)= 0;

/**/ Capacity(EmtyTskQ~ n;

1*5*1 Equal(EmtyTsk% EmtyTskQO. Equal(n,,n2)
n1 22

/*6*/ Equal(q,,q3 Equal(q .q2)

12

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: TASKQUEUE(n); (continued)

/*7*/ Enter Task(sqi,se) =WHEREBY q OTHERWISE KEJC (q, ne,nq)_;

PARTITION OF (sqi,se,sq) IS

(qi,e,q)JSize(sqi) < Capacity(sqi),

(nqi,ne,nq)fSize(sqi) > Capacity(sqi);

1*8*1 q #EmtyTskQn;

/*9*/ Size(q) 1 + Size(qi);

/*10*! Equal(q,Enter Task(q1 ,e 1) Equal(qi,ql) & Equal(e,el);

/*11*/ First Task(q) = e OTHERWISE FirstTask(2qi);

1. 2 2/*12*/ DiscardTask(q) = qi OTHERWISE EnterTask(Discard-Task(qi) , e)

PARTITION OF (qi,q,e) IS

1(qi,q,e) IPreceeds?(Delta_-T(e),DeltaT(First_-Task(qi)))

2qiqe) -Preceeds?(DeltaT(e),Delta T(FirstTask(qi)))

1*13*/ Capacity(q) =Capacity(qi.);

END TASKQUEUE(n)

13

HIHRORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 019-(1)6180
HIGHER~ -AJ17i.9o-j

DATA TYPE: TASKQUEUE(n); (continued)

Primitive Operation Descriptions:

q = EnterTask(q1 ,e 3; Enters a TASK ENTRY into a TASK_QUEUE

according to its DeltaT. An entry is

queued behind all others of lower

Delta T and all others of the same

Delta T that were filed before it.

It is queued before all entries of

higher DeltaT and all entries of the

same Delta T that are filed after it.

Implictly, once a task is entered into

the queue, its Delta T becomes the

time-difference between its execution time

and the execution time of the task

preceeding it in the queue. Thus, if

two tasks in the queue have the same

execution time, the Delta T of the

second would be equal to Notime. In

this way, when a task becomes first

in the TASKQUEUE, its Delta_T

represents the time delay between the

current time and the task execution time.

q = Discard Task(ql Eliminates the first entry in the

TASKQUEUE. Will never.reject (see Axiom 2).

e FirstTask(q); The first entry in the TASKQUEUE. There

is always a first entry because DummyTask

is always returned as the first task of

an EmtyTskQ (see Axiom 1).

n = Size(q); The current size of the TASK QUEUE

(i.e., number of entries present).

A DummyTask is not included in

this count (see Axioms 3 & 9).

14

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: TASKQUEUE; (continued)

n = Capacity(q); The maximum allowable size of the TASK QUEUE.

b = Equal(ql,q 2); Test to determine if two TASK-QUEUES

are identical.

Axiom Descriptions:

Axiom 1: Assures that DummyTask is always present in an EmtyTskQ.

Axiom 2: Assures that DummyTask will be present as the first

entry in an EmtyTskQ even after an entry is discarded.

Axiom 3: In conjunction with Axiom 9, states that Size is a

count of the entries in the queue that are not DummyTask

Axiom 4: The capacity of a TASKQUEUE is determined by the

subscript of the EmtyTskQn that it was built from.

Axiom 5: Two EmtyTskQnIs are identical if their capacities

are equal (as indicated by their subscripts).

Axiom 6: States that the test for equality is reflexive.

Axiom 7: States that Enter Task will reject if the queue

is already filled to capacity. In this statement, also,

is defined a symbol for the case in which the queue is not

previously filled to capacity.

Axiom 8: Indicates that an EmtyTskQ is never the same as a

TASKQUEUE in which an entry has been made.

15
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

t

DATA TYPE: TASKQUEUE(n); (continued)

Axiom 9: States that an entry made into a queue that is not

filled to capacity will increase its size by one. Note

that if DummyTask is entered via the EnterTask operation,

it will be treated as any other task and will increase

the size of the queue.

Axiom 10: States that the TASKQUEUES resulting from entries made

into two non-filled queues will be identical if the

original queues were identical and the two task entries

are identical.

Axioms

11 & 12: Assure that the process of entering a task into the

queue will:

1. place the new task at the front of the
queue if it has the smallest Delta T, or

2. place the new task in its proper order

so that repetitive applications of
Discard Task and First Task will find the
new task in front of all tasks with
greater DeltaT.

Axiom 13: The capacity of the queue is invariant over the

Enter Task operation.

16

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

DATA TYPE: TASKENTRY;

PRIMITIVE OPERATIONS:

address = TaskAddr(task-entry)

time = DeltaT(task-entry)

task entry = AsgnTask(task entryl,address,time)

boolean = Equal(task-entry,,task entry2)

AXIOMS:

WHERE EmtyTask IS A CONSTANT TASKENTRY;

WHERE e,e1 ,e 2 ARE TASKENTRYS;

WHERE a IS AN ADDRESS;

WHERE t IS A TIME;

/*I*/ TaskAddr(EmtyTask)=REJECT:F

1*2*1 DeltaT(EmtyTask)=REJECT;

/**/ TaskAddr(AsgnTask(e,a,t))=a;

/*4*/ DeltaT(AsgnTask(e,a,t)) t;

1*S*/ Equal(e1 ,e 2)=Equal(TaskAddr(e 1),Task Addr(e 2))

& Equal(DeltaT(e1I),Delta T(e 2))

END TASK-ENTRY;

17

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

DATA TYPE: TASK-ENTRY; (continued)

Primitive Operation Descriptions:

a = TaskAddr(e); ADDRESr attribute of a TASKENTRY.

t = DeltaT(e); TIME attribute of a TASK ENTRY.

e2 = Asgn_Task(el,a,t); Assigns the ADDRESS and TIME attributes

to a TASK ENTRY.

b = Equal(el,e 2); Tests to determine if two TASKENTRYs

are identical.

Axiom Descriptions:

Axiom 1: An EmtyTask has no ADDRESS attribute to examine.

Axiom 2: An EmtyTask has no TIME attribute to examine.

Axiom 3: The ADDRESS attribute that is assigned to a

TASK ENTRY becomes the value that may be examined.

Axiom 4: The TIME attribute that is assigned to a

TASKENTRY becomes the value that may be examined.

Axiom 5: Two TASK ENTRYs are identical if their assigned

attributes are identical.

A TASK ENTRY consists of the task address and delay time for an

entry into a TASK_QUEUE. The task specified by the address will

be executed after a delay specified by the time when an entry is

made into the queue. EmtyTask is the empty value of a TASKENTRY.

18

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-890or
.... ,, j.

2.2 Waitlist System Operations

The specifications of all the Waitlist System operations are contained

in this section. A description of the function of the operations is

given below. The specifications follow.

Waitlist Operation Descriptions:

Preceeds?: Test to determine if one time occurs

before another.

Reverse: Produces a value that is the time

reverse of the input.

Regress: Decrements one time value from another.

NewTaskEntry: Generates a TASKENTRY from the

specified attributes.

UpdateWaittime: Replaces the DeltaT of the first

TASKENTRY in the TASKQUEUE by

the new time delay value that

is specified.

Pop_First Task: Removes the first TASKENTRY from

the TASK_QUEUE and outputs both the

entry and the new queue.

Counter-Interrupt: Decrements the time delay of the

first TASK-ENTRY in the TASKQUEUE

by the specified amount. If the

first task must not then be delayed

any longer, a flag is set to

ihdicate this.

S 19

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

Waitlist Operation Descriptions (continued):

T3rupt: Extracts the first task from the

TASKQUEUE for execution. Sets a

flag (ruptagn) to indicate if the

next task is also to be executed

immediately. In the AGC, T3RUPT

is the program interrupt to service

the Waitlist System when the TIME3

counter overflows.

Taskover: If the flag ruptagn is True,

then T3rupt is reinvoked to process

the task interrupt. Otherwise,

no change is made to the TASKQUEUE

and the task-identifying output-
address is EmtyAddr because no new
task is to be executed.

Longcall: Because in the AGC the value of the

Delta T ofa TASK-ENTRY has a maximum

limit, one task at a time can be

delayed longer than this limit using

the Longcall operation. The constant

time, CycleTime, has a value that is

this maximum delay. The time input

to Longcall is the total delay before

the task is to be executed. Longcall

uses Longcycle to recycle the delay

until the delay interval is within

the maximum limit. Taskcall is then

invoked to enter the actual task

invocation request.

20

HIGHER ORDER.SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

Waitlist Operation Descriptions (continued):

Longcycle: Decrements the time delay by the

amount of CycleTime and enters

Longcall as a task to be executed

after the delay CycleTime.

LongcallAddr is a constant ADDRESS

with a value which identifies

Longcall as a task.

Taskcall: Makes the final Waitlist entry for

the delayed task of Longcall, to

be executed after the delay time when

it is less then the CycleTime period.

I

21

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661.8900

OPERATION: b =Preceeds?(t1 ,t 2);

WHERE bblob2,1b 3 ARE BOOLEANS;

WHERE t 1 't 2 ARE TIMES;

b= And(b1 .b 2) JOIN (b1,b 2 F(it2) ;

b =Notaftrtt2 COINCLUDEb2= tll2)

b= Not(b 3) JOIN b 3 = Equal(t1 ,t 2);

END Preceeds?;

DERIVED OPERATION: time = Reverse(time1)2

WHERE t IS A TIME;

Advance(Reverse(t),t) =Notime;

END Reverse;

OPERATION: t3 Regress(t1 ,.t;

WHERE t1.,t23t3 t4 ARE TIMES;

t 3 =Advance(t 1, 44 COJOIN t= Reverse(t 2;

END Regress;

22

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

4.

OPERATION: e NewTaskEntry(a,t);

WHERE e IS A TASKENTRY;

WHERE a IS AN ADDRESS;

WHERE t IS A TIME;

WHEREBY e = AsgnTask(EmtyTask,a,t);

END NewTaskEntry;

OPERATION: qo UpdateWaittime(qit);

WHERE t IS A TIME;

WHERE qi,qo,ql ARE TASKQUEUES;

WHERE el,e 2 ARE TASKENTRYS;

WHERE a IS AN ADDRESS;

qo= Enter-Task(ql,e 2) JOIN (ql,e 2) = Fl(qi,t);

q = DiscardTask(qi) COINCLUDE e2 = 2(qi,t);

e= NewTaskEntry(a,t) COJOIN a = F3 (qi);

a = TaskAddr(e1) JOIN e1 = FirstTask(qi) ;

END UpdateWaittime;

OPERATION: (q ,e) = Pop_FirstTask(qi);

WHERE qi,qo ARE TASKQUEUES;

WHERE e IS A TASKENTRY;

qo= DiscardTask(qi) COINCLUDE e = FirstTask(qi);

END Pop_FirstTask;

2 3
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

OPERATION: (q 0 overflow?) CounterInterupt(q.,tinc);

WHERE q, ARE TASK_ QUEUES;

WHERE overflow? IS A BOOLEAN:

WHERE e IS A TASKENTRY;

WHERE tinc, t1,t 2 ARE TIMES;

(q 0,overflow?) = F I q t)COJOIN t 2 F= q~tn)

q= Update Waittime(qi 't2) COINCLUDE WHEREBY overflow? =Notafter (t2,Notime);

t= Regress(t11 tinc)

COJOIN ti = DeltaT(e)

COJOINe = FirstTask(q.);

END CounterInterupt;

24

HIGHER ORDER SOFTWARE, INC. 8 43 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

OPERATION: (q 0,ago,ruptagn) =T3rupt(qi);

WHERE q0,qi,q ARE TASK_QUEUES;

WHERE ego,enew ARE TASKENTRYS;

WHERE ago IS AN ADDRESS;

WHERE ruptagn IS A BOOLEAN;

WHERE past,delt,t ARE TIMES;

(q 0ago,ruptagn) = F 1(q,ego,t) JOIN (q,ego,t) F = ()
2 2 2 2

q0 UpdateWaittime(q~t)
2

COINCLUDE ago = TaskAddr(ego)
2

COINCLUDE WHEREBY ruptagn = Notafter(t,Notime);

(q,ego,t) F F3(q,ego) JOIN (q,ego) Pop FirstTask(qi);
2 2

WHEREBY (q,ego) =(q,ego) COINCLUDE t F 4 (q,ego);

t =Regress(delt,past) JOIN (delt,past) =F 5(q,ego);

delt F F(q) INCLUDE past =DeltaT(ego);

16

delt =DeltaT(enew) JOIN enew =FirstTask(q);

END T3rupt;

25

HIHR ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

OPERATION: (qo1a,ruptagno) =Taskover(qi,ruptagni);

WHERE qi A q0 ARE TASK_QUEUES;

WHERE a IS AN ADDRESS;

WHERE EmtyAddr IS A CONSTANT ADDRESS;

WHERE ruptagni, ruptagn0 ARE BOOLEANS;

(1qo,
1a, Iruptagno) = T3rupt(1qi)

2 2 2 2
COEITHER WHEREBY (q2, a, ruptagno) = qEmtyAddr' ruptagn);

PARTITION OF (qo,a,ruptagn0)qiruptagn1) IS

1 (qo 0a,ruptagn°,qilruptagni)Iruptagni,

2 (q 0 a,ruptagn°,qipruptagn i)INot(ruptagn) ;

END Taskover;

OPERATION: (qo,ao,to) - Longcall(qi,ai,ti);

WHERE qi'qo ARE TASK_QUEUES;

WHERE ai ,a° ARE ADDRESSES;

WHERE ti,t 0 ARE TIMES;

WHERE CycleTime IS A CONSTANT TIME;

qo a0 , lto) "Longcycle(qi, ai, t1) COEITHER (2 qo,2 2 a0 t) = Taskcall(2qi, 2 ai 2ti);

PARTITION OF (q0 ,a0,t0,qi,a,ti) IS

1 (q 0,a0't 0 qiai ,ti)IPreceeds?(NotimeRegress(t
i,CycleTime));

2 (q0 ' ao t0 ' qi',ai' ti)jNotafter(Notime,Regress(tiCycleTime));

END Longcall;

26
HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

- -- '

OPERATION: (q 0a 0 t 0) Longcycle(qi,a.,t.);

WHERE qi,qo ARE TASK _QUEUES;

WHERE e IS A TASKENTRY;

WHERE ti.,t 0ARE TIMES;

WHERE CycleTime IS A CONSTANT TIME;

WHERE a.,a 0 ARE ADDRESSES;

WHERE LongcallAddr IS A CONSTANT ADDRESS;

q= F 1(q.) COINCLUDE WHEREBY t 0= Regress(t.,Cycletime)

COINCLUDE WHEREBY a a a.;

q= EnterTask(q,,e)

COJOIN WHEREBY e =New Task Entry(LongcallAddr,CycleTime);

END Longcycle;

OPERATION: (q 0,a 0,t 0) Taskcall(qi,a.,t .);

WHERE qi,qo ARE TASKQUEUES;

WHERE e IS A TASKENTRY;

WHERE a.,a 0ARE ADDRESSES;

WHERE tt 0 ARE TIMES;

q= F 1(q,,ai,ti) COINCLUDE WHEREBY (a0 ,t0) z (ai3ti);k

q= EnterTask(q.,e) COJOIN e =New Task Entry(a.,t .);

END Taskcall;

* 27

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

3.0 EXECUTIVE SYSTEM SPECIFICATION

The data types and service operations of the Executive System are over-

viewed below. The specifications themselves are contained in Sections 3.1

and 3.2 respectively.

Executive System Data Types:

* JOBQUEUE: List of job invocation requests

which are ordered according to

their priorities.

* JOB-ENTRY: Information required to establish

a job invocation request in the

JOBQUEUE. Includes proper

identification of the job itself.

* PRIORITY: Indicates a relative position

or importance in an ordering.

* TUPLE: A set of values which are ordered

on the natural members.

e STACK: A "last in first out" list of values.

Executive System Service Operations:

* Findvac: Invoked to establish a job invocation request

for a job that requires a VAC area (Vector

Accumulator Temporay Storage Area) to be

executed as soon as its priority is the highest

in the JOBQUEUE. (Corresponds to AGC Program

entries: FINDVAC, and SPVAC, where SPVAC is a

different implementation for shorter address

references.)I

29

HIGHER ORDER SOFTh ARE, INC.. 843 MASSACHUSETTS AVENUE • C MBRIDGE, MASSACHLSETTS 02139 • (617) 661-8900

Executive System Service Operations (continued):

e Novac: Invoked to establish a job request for a job

without a VAC area.

* ChangeJob: Invoked to restore the state of a currently

executing job (at its same priority level)

in the JOBQUEUE, indicates which job in the

queue is presently of highest priority.

(Corresponds to AGC program entries: CHANG1

and CHANG2).

* Jobsleep: Invoked to "put a job to sleep" which is

to remove from consideration for execution

a job already established in the queue.

Does not remove the job from the queue, "just

puts it to sleep" for a while, until it gets

"awoken" again. (Corresponds to AGC program

entry: JOBSLEEP.)

e Jobwake; Returns a "sleeping" job back into consideration.

for execution. (Corresponds to the AGC program

entry: JOBWAKE.)

* Priochng: Invoked to alter the priority of a job in the

queue, with the consequence of a possible

change in its relative position. (Corresponds

to the AGC program entry: PRIOCHNG.)

* Endofjob: Invoked to remove a job from the executive

system and release any storage allocated to it.

(Corresponds to the AGC program entry: ENDOFJOB.)

30

.4 I 0Of ThI ARE. INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

W, 4 1
3.1 Executive System Data Types

The data type specifications of the Executive System follow in this

section. With each specification are included explinations of the

function of the primitive operations and of the data-type axioms.

5 D31
HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

DATA TYPE: JOBQUEUE(n)

PRIMITIVE OPERATIONS:

(job-queue 2,address) = EnterJob(job queuel,job entry,priority)

(job entry,priority,address) = Top_Job(job-queue);

job _queue 2 = DiscardJob(job _queu,,);e

(job-entry,priority) = ExamineJob(job_queue,address)

natural = Size (job_q!ueue)

natural = Capacity(job-queue)

boolean = Equal(job _queueljob queue2)

AXIOMIS:

WHERE n,n1 ,n 2 ARE NATURALS;

WHERE EmtyJobQ n IS A CONSTANT JOBQUEUE(n);

WHERE - DumrnyJob IS A CONSTANT JOBENTRY;

WHERE DummyPrio IS A CONSTANT PRIORITY;

WHERE DummyAddr IS A CONSTANT ADDRESS;

WHERE ql,q 2 pq 3,q,sq,nq,qi,sqi,nqi ARE JOBQUEUES;

WHERE e1,e,se,ne ARE JOBENTRYS;

WHERE p,,p,sp,np ARE PRIORITYS;

WHERE adr~a1,a~sa,na ARE ADDRESSES;

/*1I*/ TopJob(ErntyJobQn DuimyJob,DummyPrio,DummyAddr)

1
1*2*1 Discard_Job(EmtyJobQn,adr) = K,, (myo~ adr)

2 I

OTHERWISE K REJECT (adr);

/*/ ExamineJob(EmtyJobQnadr) = ('K myo(adr) IK~um Pi(adr));

OTHERWISE K REJECT (2adr),

32

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-89(

I1

DATA TYPE: JOBQUEUE(n); (continued)

PARTITION OF adr IS

.adr Iadr DummyAddr,

2adr adr #DummyAddr;

/*4*/ Size(EmtyJob%)=0

1*5*1 Capacity(EmtyJobQ) n;

/*6*/ ~~~~Equal(EmtyJobQ n,EmtyJobQ n2 Euln~)

/*7*/ Equal(q 2 q3) = Equal(q 3,q2);

1*8*1 EnterJob(sqi,se,sp) = WHEREBY (q,a)

OTHERWISE K REET(q,ne,np,nq,na);

PARTITION OF (sqi,se,sp,sq,sa) IS

(qi, e, p, q, a) jSize(sqi) < Capacity(sqi),

(nqi,ne,np,nq,na) ISize(sqi) > Capacity(sqi);

/*9*/ DiscardJob(q,a) =qi;

/*10*/ ExamineJob(q,a) =(e,p);

/*11*/ q $ EmtyJobQn;

1*12*1 Size(q) = 1 + Size(qi);

1*13*1 Capacity(q) = Capacity(qi);

1*14*1 Equal(Enter Job(ql,e 1,p1),(q,a))

* Equal(ql,qi) & Equal(el,e) & Equal(pl,p);

p 33

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: JOB QUEUE(n); (continued)

1*15*1 a # DuminyAddr;

1*16*1 IDENTIFY 2 (EnterJob(q,e1, 1 a;

21 21p

1*17*1 TopJob(q) =(e, 1p, 1a) OTHERWISE TopJob(2qi);

PARTITION OF (qi,e,p,q,a) IS

(qi,e,p,q,a) IHigher?(p,IDENTIFY 3 TopJob(qi)))

2 3
(qi,e,p,q~a) I-Higher?(p,IDENTIFY2(TopJob(qi)))

END JOB _QUEUE(n)

34

..

DATA TYPE: JOB_QUEUE(n); (continued)

Primitive Operation Descriptions:

(q2,a) = Enter Job(q,,e,p); Makes an entry into the JOB_QUEUE. The

JOBENTRY is ordered in the queue accord-

ing to the specified PRIORITY. An ADDRESS

is returned as an identifier not of the

job's location in the queue, but for

random refference to the job while it is

in the queue.

(e,p,a) = Top Job(q); Identifies which job in the queue is

currently of highest priority.

2Discard_-Job(qa); Removes from the queue, the JOBENTRY

identified by the given address. Will

reject if no job is associated-with

the specified address.

(e,p) = Examine Job(q,a); Identifies from the queue, the job and

its priority that is associated with

the specified address.

n = Size(q); A count of the net number of entries

that have been made to the queue.

n = Capacity(q); Indicates the maximum total number of

entries that may be contained within

the queue at oue time.

b = Equal(ql,q 2); Determines if two queues are identical.

35

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: JOB_QUEUE(n); (continued)

Axiom Descriptions:

Axiom 1: Assures that DummyJob with its associated priority and

identifier is always present in an EmtyJobQ.

Axiom 2: Discarding DummyJob using its identifier, DummyAddr,

does not change the EmtyJobQ. However, any other

address will reject because there can be no job

associated with it.

Axiom 3: Only a DummyJob identified by DummyAddr exists in an

EmtyJobQ to be examined.

Axiom 4: No jobs have been entered into a EmtyJobQ.

Axiom 5: The capacity of a JOB__QUEUE is determined by the

subscript of the EmtyJobQn that is was built from.

Axiom 6: Two EmtyJob's are identical if their capacities

are equal (as indicated by their subscribts).

Axiom 7: States that the test for iquality is reflexive.

Axiom 8: States that Enter Job will reject if the queue is

already filled to capacity. A symbol is also defined

in this statement for the case in which the queue

is not previously filled to capacity.

Axiom 9: A job that is entered into the queue may be randomly

removed by the Discard Job operation.

Axiom 10: The addrest that is returned when a job is entered

may be used to identify that job from within the queue.

36

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE o CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: JOB QUEUE(n); (continued)

Axiom 11: An EmtyJobQ is never the same as a

JOBQUEUE in which an entry has been made.

Axiom 12: An entry made into a queue that is not filled to

capacity will increase its size by one. Note that

if DummyJob is entered via the Enter Job operation,

it will be treated as any other job and will increase

the size of the queue.

Axiom 13: The capacity of a queue remains constant when

jobs are entered (and when deleted as indicated

by Axiom 9).

Axiom 14: The JOBQUEUEs resulting from entries made into

two non-filled queues will be identical if the

original queues are identical and the two jobs

are identical.

Axiom 15: The value of DummyAddr (which is associated with

DummyJob) is never equal to the identifier of

a job that has been entered into the queue.

This is true even if the particular job that

was entered was DummyJob. In this case, the axiom

states that a different value than DummyAddr

would be returned.

Axiom 16: Each different entry into the queue has a unique

identifier.
S

Axiom 17: The process of entering a job into the queue will either

place the new job at the front of the queue if it has the

highest priority or place it in proper order so that

repetitive applications of DiscardJob and TopJob will

find the new job in front of all jobs with lower priorities.

-- 37

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 - (617) 661-8900

DERIVED OPERATION: job-queue 2 =ReplaceJob(job _queue1,job-entry,address)

WHERE q,sq,nqqi,sqi,nqi ARE JOBQUEUIES;

WHERE ee 2, e,se,ne ARE'JOBENTRYS;

WHERE p,sp,np ARE PRIORITYS;

WHERE a1,a a,sa,na ARE ADDRESSES;

Replace Job(EmtyJobQn,el,al REJECT;

EnterJob(sqi,se,sp) =WHEREBY (q,a) OTHERWISE K nin~n~qn)

PARTITION OF (sqi,se,sp,sq,sa) IS

(qi, e, p. q, a) Size(sqi) < Capacity(sqi),

(nqi,ne,np,nq,na) ISize(sqi) > Capacity(sqi);

ExamineJob(ReplaceJob(q,e13a),a)=(e1,p);

Equal(Replace Job(q,e1 ,a),Replace Job(q,e2,a))= Equal(e1 ,e2,) & Equal(a1 ,a2)

Size(ReplaceJob(q,e1 ,a))=Size(q)-

Capacity(ReplaceJob(q,elpa))=Capacity(q);

END ReplaceJob;

The effect of the ReplaceJob operation is that the resulting JOB-QUEUE

has had replaced the JOBENTRY associated with the specified ADDRESS

by the new JOBENTRY that is specified. No other changes occur. If

no JOBENTRY has been associated with the specified ADDRESS, the

operation will reject.

38

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

DATA TYPE: JOB-ENTRY;

PRIMITIVE OPERATIONS:

tuple = JobRegSet(jobentry);

address = Lbc&Bankset(jobentry);

address = VacAddr(jobentry);

boolean = Asleep?(jobentry);

jobentry2 = AssgnJobEntry(jobentryl,tuple,addressl address,,boolean)

boolean = Equal(jobentry1,jobentry 2);

AXIOMS:

WHERE e,ee 2 ARE JOBENTRYS;

WHERE EmtyJob IS A CONSTANT JOB-ENTRY;

WHERE reg IS A TUPLE;

WHERE loc~adr ARE ADDRESSES;

WHERE zzz IS A BOOLEAN;

/*1*/ JobRegSet(AssgnJobEntry(e,reg,loc,adr,zzz-)) = reg;

1*2*/ Loc&Bankset(AssgnJobEntry(e,reg,loc,adr,zzz)) = loc;

/**/VacAddr(AssgnJobEntry(e,reg,loc~adr,zzz))=adr;

/**/Asleep?C AssgnJobEntry(e,reg,loc,adr,zzz))=zzz;

/*5*1 Equal (e1 ,e 2) Equal(Job_-Reg Set(e 1),Job_-Reg,_Set(e 2))

SEqual(Loc&Bandset(e),Loc&Bandset(e))

& Equal(k VacAddr(e 1),VacAddr(e 2))

* 39
HIGHER ORDER SOFTWARE, INC. * 843 MASSACHUSETTS AVENUE *CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: JOBENTRY; (continued):

/*6*/ JobRegSet(EmtyJob.) = REJECT;

1"7"/ Loc&Bandset(EmtyJob) = REJECT;

1*8*/ Vac Addr(EmtyJob) REJECT;

/'9"I Asleep?(EmtyJob) = REJECT;

END JOB-ENTRY;

Primitive Operation Descriptions:

t = Job.RegSet(j) In the AGC, a job register set is a group of

data cells set aside for each established

job for use as temporary storage and status

information. This is specified as a TUPLE.

a = Loc&Bankset(j) In the AGC the cells LOC and BANKSET determine

a unique address for a job starting location.

This amounts to a unique identifier or name

for a job, and is specified as an ADDRESS.

a = VAC Addr(j) An AGC VAC (Vector ACcumulator) area is a

stack-like storage area. VacAddr indicates

the starting address of the VAC area.

40

HIGHER ORDER SOFTWARE, INC. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661.8900

DATA TYPE: JOB ENTRY; (continued)

b = Asleep?(j) An AGC job that has been "put to sleep" will

not be considered for execution regardless of

its priority until it is "awakened." It

does, however, retain its status as an

established job. This is specified as a

boolean-value attribute of a JOBENTRY.

j2 = AssgnJobEntry

(jl,t,al,a 2,b) (Assign attributes to a Job._Entry.) The

JOBENTRY, jl, is given the attributes

tla,a ,2,b to produce j2"

Axiom Descriptions:

Axioms 1-4: The attributes assigned to an JOBENTRY are

those that will be produced when it is exaniined.

Axiom 5: Two JOB ENTRYs are equal when all their

attributes are equal.

Axioms 6-9: An Empty Job Entry has no attributes.

A JOBENTRY is an information-storage device. It differs

from a data structure in that as a data type it entails

no internal structure. In implementation an internal

* structure is necessary. This, however, is not of concern

at this layer of abstraction. A JOBENTRY corresponds to

an established job in the AGC.

NE.......... .--- 8 AU41
HIHRORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661.8900

DATA TYPE: PRIORITY;

PRIMITIVE OPERATIONS:

boolean = Higher? (priority,,priority2);

boolean = Equal (priorityl priority 2);

AXIOMS:

WHERE P'P1,P2 ARE PRIORITYS;

/*I*/ Equal(p,p) =True;

/*2*! Equal(p1,'P2) = Equal (P2,Pl);

/*3*/ Entails(Equal (Pl'P2)&Equal (P2,P3) ,Equal (PlP9) True;

/*4*/ Higher?(p,p) = False;

1*S*1 Entails(Higher?(p P2)p9&Higher? (P2 'P3) ,Higher (PlP3)) = True;

1*6*/ Entails(Higher?(Pl'P2) &Higher? (P2 'Pl) Equal(p, 'P2)) = True;

/*7* Higer?(, '2) !ighe? (P'P = True;

END PRIORITY;

Primitive Operation Descriptions:

Higher? A boolean function indicating whether or not the

first input PRIORITY is of greatest importance (i.e.,

"higher priority") than the second.

Equal Boolean function indicating the equality of two

PRIORITYs.

Axiom Descriptions:

Axioms 1-3 Characterizes the equal OPERATION as an equivilance

relation.

Axioms 4-7 Characterizes PRIORITYs as a totally ordered set.

42

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 .(617) 661-8900

DATA TYPE: TUIPLE;

PRIMITIVE OPERATIONS:

tuple 2 =AsgnItem(tuple1,anytype,natural)

It anytype =ExamineItei(tuple,natural)

boolean =Empty?(tuple)

boolean Equal(tuple1,tuple2)

AXIOMS:

WHER t~tt 2ARE TUPLES;

WHERE a,a1,a ARE OF SOME TYPE; WHERE ANYTYPE IS SOME TYPE;

WHERE n,n1,n 2.n 39n 4 ARE NATURALS;

WHERE EmtyTuple IS A CONSTANT'TUPLE;

1*1*! Empty?(EmtyTuple)=True;

1*2*1 Empty?(Asgn_Item(t,a,n))=False;

/*3*/ ExamineItem(Asgn Item(t,a,n 3 ,n 4)=a

OTHERWISE ExamineItem(2t,2n4)

PARTITION OF (t ,,n n3 'n 4 is

*1
(t,a,n3,n) n.

2 2 {t,a,n,,n 4) In. n 4

1*4*1 Equal(AsgnItem(tan 1),Asgn Item(t 2 ya 2 Pn 2))

Equal(t1,t 2) &* Equal(al,a 2) &~ Equal(nl,n 2);

5/ Equal(EmtyTuple,EmtyTuple)=True;

1*6*! Equal(AsgnItem(t,a,n),EmtyTuple)=False;

/*7*/ ExamineItem(EmtyTuple,n)= REJECT;

END TUPLE; 43

HIGHER ORDER. SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 021 'a~

DATA TYPE: TUPLE; (continued)

Primitive Operation Descriptions:

t = AssgnItem(tl,a,n) Enter the value of a into tI at the ordering-position indicated by n to produce t2 .

a = ExamineItem(t,n) Give a the value that was entered in t at

ordering-position n.

b = Empty?(t) Has t been assigned any values?

b = Equal(tl,t2) Is tI identical to t 27

Axiom Descriptions:

Axiom 1: The value of EmtyTuple is a TUPLE for which no

entries have been made.

Axiom 2: Any TUPLE which has been assigned an entry

is never equal to EmtyTuple.

Axiom 3: The value examined at an ordering-position will

be the value that has been assigned there.

Axiom 4: The results of assignments to two TUPLEs are

identical if the original TUPLEs are identical,

the assigned values are equal, and the assigned

positions are equal.

Axiom 5: Two instances of EmtyTuple are equal.

Axiom 6: EmtyTuple can never equal a TUPLE which has had assignments.

Axiom 7: No values have been entered into EmtyTuple and hence,

none can be examined.

44
HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

z,

DATA TYPE: STACK;

PRIMITIVE OPERATIONS:

stack 2= Push(stack1.,anytype)

sak2 = op(stack 1

anytype = Top(stack)

boolean = Equal(stack stac 2;

AXIOMS:

WHERE EmtyStack IS A CONSTANT STACK;

WHERE ANYTYPE IS SOME TYPE;

WHERE t IS OF SOME TYPE;

WHERE s~'i1' 2 ARE STACKS;

/*1*1 Top(EmtyStack)=REJECT;

1*2*1 Top(Push(s,t)) =t;

/*3*/ Pop(EmtyStack) = REJECT;

/*4*/ Pop(Push(s,t)) s=

/**/ Equal(s1 ,s 2) Equal(Top(s 1),Top(s 2 & Equal(Pop(s 1),Pop(s 2))

1*6*/ Equal(EmtyStack,Push(s,t))=False;

/*7*/. Equal(EmtyStack,EmtyStack)=True;

END STACK;

45

ftHIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

DAT; r'PE: STACK; (continued)

Prij *e Operation Descriptions:

s2 "n(sl,t); Enters an item onto the stack.

s- Isl); Removes the top item from the stack.

t = 3); Examines the top item on the stack.

b ! (Ssl,S2); Test to determine if two stacks are identical.

Axic 4criptions:

Axi. No items exists in EmtyStack to examine.

Axi The Push operation enters the specified item

at the top of the stack.

Axi No items exists in EmtyStack to remove.

Ax.- Removing the last placed item returns the original value.

Axi -7: Provide a deductive basis for evaluating the equality
of two stacks. Two stacks are identical if all the items

they contain are identical and in identical order.

EmtyStack is never equal to a stack with an item entered,

and two instances of EmtyStack are equal.

46

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

3.2 Executive-System Operations

The specifications of all the Executive System operations are contained

in this section. A description of the function of the operations is

given below. The specifications follow.

Executive Operation Descriptions:

Findvac: Establishes a job in the JOBQUEUE and allocates

a VAC Area to the job. Will reject if no VAC Areas

are available or if the JOBQUEUE is filled to

capacity. INVOKES: Novac2;

Novac: Establishes a job without allocating a VAC Area.

Will reject if the JOBQUEUE is full.

INVOKES: Novac2;

Novac2: Enters a new job into the JOBQUEUE. Will reject

if the queue is full. INVOKED BY: Findvac,Novac;

INVOKES: NewJobEntry;

NewJobEntry: Creates a new JOBENTRY from the specified attributes

by assigning them to an EmtyJob. INVOKED BY: Novac2;

ChangeJob: Replaces a specified JOBENTRY at the location given

(in the relative position given by the priority it

was entered with) and produces the location and

JOB ENTRY that has the highest priority.

Jobsleep: Puts to sleep the JOBENTRY at the specified location

in the JOBQUEUE and it assigns its Loc Bankset

according to the address specified.

INVOKES: GoToSleep,AsgnLoc&Bankset;

1

* &47
* HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

Ai

Executive Operation Descriptions (continued):

Go To Sleep: Puts a JOBENTRY into the state of "being asleep."

INVOKES: SetSleep_State; INVOKED BY: Jobsleep;

Jobwake: Awakens the JOB ENTRY at the specified location

in the JOB_QUEUE. INVOKES: WakeUp;

Wake Up: Puts a JOBENTRY into the state of "being awake."

INVOKES: SetSleepState; INVOKED BY: Jobwake;

SetSleep_State: Sets the sleep state of a JOBENTRY according to

the boolean value specified.

INVOKED BY: GoTo_Sleep,WakeUp;

Asgn_Loc&Bankset: Assigns the specified address to the Loc&Bankset

of the JOB ENTRY. INVOKED BY: Jobsleep;

Priochng: Removes the JOB ENTRY at the specified location in

the JOBQUEUE and reenters it with a new priority.

Endofj ob: Removes a JOBENTRY from the JOB_QUEUE and

releases its VAC Area (if one was assigned)

for further use.

New Job Yet?: Determines if there is a JOB ENTRY in the JOBQUEUE

with a higher priority than the one at the specified

location.

48

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

OPERATION: (q 0's 0 ,locctr) =Findvac(qj,sj,new-prio,newloc);

WHERE q.,q, ARE JOBQUEUES;

WHERE s ,s 0 ARE STACKS;

WHERE newloc,locctr,vacaddr ARE ADDRESSES;

WHERE newprio IS A PRIORITY;

s= Pop(s.) COINCLUDE (q09.locctr) = F 1(qj,sj,newprio,newloc);

(q 0 locctr) =Novac.2(q.,newloc,vacaddr,newprio) COJOIN vacaddr =Top(si);

END Findvac;

-OPERATION: (q 0 locctr) = Novac(q.,newprio,newloc);

WHERE qqoARE JOBQUEUES;

WHERE newloc,locctr,vacaddr ARE ADDRESSES;

WHERE newprio IS A PRIORITY;

WHERE NoVacAddr IS A CONSTANT ADDRESS;

WHEREBY (q 0locctr) =Novac2(q. ,newloc,NovacAddr,new-prio);

END Novac;

49

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

OPERATION: (q0 , locctr) =Novac2 (q. ,newloc,vacaddr,newprio);

01

WHERE qqoARE JOB_QUEUES;

WHERE e IS A JOBENTRY;

WHERE newloc,vacaddr ARE ADDRESSES;

WHERE newprio IS A PRIORITY;

(q ,locctr) = Exiter Job(q.,e,newprio)
.0- 1

COJOIN HiEREBY e =New JobEntry(EmtyTuple,newloc,vacaddr,False);

END Novac2;

OPERATION: e =NewJobEntry(v,a 1 3a 2,b)

WHERE e IS A JOBENTRY;

WHERE v IS A TUPLE;

WHERE a1,a2 ARE ADDRESSES

WHERE b IS A BOOLEAN;

WHEREBY e AsgnJob_Entry(EmtyJob,v,ala 2 9b);

END New JobEntry;

50

HIGHER ORDER SOFTWARE, I-NC. - 843 MASSACHUSETTS AVENUE -CAMBRIDGE, MASSACHUSETTS 02139 .(617, 661-8900

OPERATION: (q 0 e 0'0 c 0 fixloc) =ChangeJob)(q.,e.,loc .);

WHERE qoARE JOB_QUEUES;

WHERE e. ,e 0 e1 ARE JOB-ENTRIES;

WHERE loci.loc 0,locl.,fixioc ARE ADDRESSES;

WHERE ovfind IS A BOOLEAN;

WHERE qtop IS (JOBENTRY,PRIORITY,ADDRESS);

(q 0,e 0,loc 0,fixloc) = F 2(q 1) JOIN q,= Replace-Job(q.,e.,loc.);

WHEREBY q = qICOINCLUDE (e a loc 0,fixloc) F= q)

(e0 loc0 ,fixloc) = F (e1 31oc) JOIN (e1 ,loc1 IDENTIFY 3 (qtop)

JOIN qtop =Top Job(ql);

WHEREBY (e 0 loc 0 (e,,loc)I COINCLUDE fixioc =Vac Addr(e1);

END Change Job;

OPERATION: q0 Jobsleep(q.,locctr,newloc);

WHERE qqoARE JOB _QUEUES;

WHERE e1,e 2 Pezz ARE JOBENTRYS;

WHERE locctr,newloc ARE ADDRESSES;

WHERE ep IS (JOBENTRY,PRIORITY);

q= Replace Job(qi,ezz,loc) COJOIN ezz =GoToSleep(e 2)

COJOIN e2= AsgnLoc&Bankset(e1 ,newloc)

1OOI e=IDENTIFY 2(ep)

COJOIN ep = Examine-Job(qi~1occtr);

END Jobsleep;

51

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

OPERATION: e. GoToSleep(e.i);

WHERE e.,e 0ARE JOBENTRYS;

WHEREBY e 0= SetSleepState(e.True);

END GoToSleep;

OPERATION: q0 Jobwake(q izzloc);

WHERE qqoARE JOBQUEUES;

WHERE ezz,eup ARE JOB ENTRYS;

WHERE zzloc IS AN ADDRESS;

WHERE ep IS (JOBFV"'RY,PRIORITY); i

=o Replace Job(q.,eup~zzloc)

COJOIN eup = WakeUp(ezz)

COJOIN ezz = IDENTIFY 2(ep)

COJOIN ep =Examine Job(qi,zzloc);

END JobWake;

OPERATION: e 0 Wake Up(e.);

WHERE ei~e 0 ARE JOBENTRYS;

WHEREBY e 0= Set-Sleejat 1Fas)

END Wake-Up;

52
HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

OPERATION: e 0 SetSleepjState(e.asleep?)

WHERE e.,e 0ARE JOBENTRYS;

WHERE v IS A TUPLE;

WHERE loc,va ARE ADDREESES;

WHERE asleep? IS A BOOLEAN;

e= AsgnJobEntry(e..v,loc,va,asleep?)

COJOIN v = JobReg_Set(e.i)

COJOIN loc =Loc&Bankset(e .)

COJOIN va =VacAddr(ei);

END SetSleepState;

OPERATION: e 0 AsgnLoc&Bankset(e.boc);

WHERE e.,e 0ARE JOBENTRYS;

WHERE reg IS A TUPLE;

WHERE loc,va ARE ADDRESSES;

WHERE zz IS A BOOLEAN;

e = AsgnJobEntry(e.reg,loc,va,zz)

COJOIN reg Job_-RegSet(e.i)

COJOIN va =VacAddr(e.i)

COJOIN zz =Asleep?(e j;

END AsgnLoc&Bankset;

53

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661 *S900

OPERATION: (q ,loc) =Priochng(qi,locctr,newprio);
0

WHERE qi~q09 ql ARE JOBQUEUES;

WHERE e IS A JOBENTRY; WHERE locctr IS AN ADDRESS;

WHERE newprio IS A PRIORITY;

WHERE ep IS (JOBENTRY,PRIORITY);

(q 0,loc) = EnterJob(q1 ,e,newprio) COJOIN (ql,e) = Fl(qi,1occtr);

q, DiscardJob(q.,locctr) COINCLUDE e F F(qi,locctr);

22

e = IDENTIFY 2(ep) JOIN ep =Examine Job(q.,locctr);
11

END Priochng;

S4

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02-139 (6171 661-890')

OPERATION: (q 0 vs 0) Endofjob(qi,vs.)loc);

WHERE qoARE JOBQUEUES;

WHERE vs , vs 0ARE STACKS;

WHERE e IS A JOBENTRY;

WHERE loc,va ARE ADDRESSES;

WHERE ep IS (JOBENTRY,PRIORITY);

WHERE NovacAddr IS A CONSTANT ADDRESS;

q0 DiscardJob(q.,loc) COINCIUDE vso = FIqvslo)

vs0 = F 2 (vsie) COJOIN e F F3(qi,loc);

2
e = IDENTIFY (ep) JOIN ep =Examine Job(qi,loc);

WEEY1 =1 CIHR2 = 2 2
WHRB s0 vs1CEIHRv 0 F 4(vsi, e);

PARTITION OF (vs ,vs.,e) IS

01

0v vs.,e)lVacAddr(e) NovacAddr,

2 (vs 0,vs.e)lVacAddr(e) NovacAddr;

2 = uh 2
_ 2

vs 0=Ps(vs.,va) COJOIN va =VacAddr(e);

END Endofjob;

55
HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

..

OPERATION: njy = NewJobYet?(q,loc);

WHERE q IS A JOBQUEUE;

WHERE toploc,loc ARE ADDRESSES;

WHERE qtop IS (JOBENTRY,PRIORITY,ADDRESS);

WHERE njy IS A BOOLEAN;

njy = Equal(loc,'toploc) COJOIN toploc =F (q);

toploc =IDENTIFY 3(qtop) JOIN qtop =Tob Job~)

END New Job Yet?;

56

HIGHER ORDER SOFTWARE, INC..- 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

Section V

A HIGHER ORDER MACHINE (HOM)

FOR

HIGHER ORDER SOFTWARE (HOS)

by

W. Heath

TABLE OF CONTENTS

1.0 INTRODUCTION.. 1

2.0 MULTIPROCESSING SYSTEM REQUIREM1ENTS......................... 2

2.1 Reliability... 2
2.2 Cost Effectiveness....................3
2.3 "Function-First" Design Approach....................... 3
2.4 Developmental Reconfigurability4
2.5 Summary of Proce!§sing System Requirements5

3.0 EXTANT MULTIPROCESSING MACHINE DESIGNS...................... 7

3.1 Special-Applications Machines......................... 7

3.1.1 The Array Machine............................... 7
3.1.2 Associative Processors.......................... 7
3.1.3 Pipelined Machines............................... 8
3.1.4 Summary of Special-Purpose Machines8

3.2 General-Purpose Multiprocessing Systems................ 8

3.2.1 The Multiprocessor.............................. 9
3.2.2 The Computation-Net Machine.................... 11
3.2.3 The Data-Flow Machine........................... 13
3.2.4 Single-Assignment Programming Concept.......... 1

3.3 Summnary of Extant Multiprocessing Concepts19

4.0 SPECIFICATION OF CONCURRENT PROCESSES....................... 20

4.1 Implementation Concepts for Multiprocessing Software. .21

4.1.1 Instruction Readiness........................... 21
4.1.2 Data Entity Concept............................. 22
4.1.3 Software Module Scope........................... 23

4.2 Instruction Readiness, Memory Allocation, and Module
Scope Conclusions....................................... 25

5.0 CONCLUSION... 26

HiGHER OkDER SOFTW.ARE, INC. - 43 %1ASSA(AWSETIS A'.ENUL C-V4BRIDGE, MAASSACHUJSETTS 02139 (617) 661.,Sq00

1.0 INTRODUCTION

The availability of low-cost digital hardware has now motivated

the use of automatic processing in applications that have much

greater complexity than those previously feasible. Because of

the degree of processing power that is required for these new

applications, it is becoming impossible for existing single-pro-

cessor architectures to meet the time constraints that are im-

posed. Single-processor systems simply do not operate fast enough

to perform all of- the required time-critical tasks. Other than

increasing actual logic-operation speeds, these time constraints

can be met by organizing the hardware so that more than one opera-

tion can be performed at a time. Many such "multiprocessing"

architectures'have been proposed, but by far the greatest diffi-

culty encountered with each design is the software control of the

many independent operations which occur simultaneously.

The theory of Higher Order Software (HOS) [HAM76a,b,c] provides

a solution to the problem of specifying concurrent, asynchronous

processes. HOS defines the interactions of data, rather than

operations on hardware, as do most common software-definition

techniques. As a result, an HOS specification provides the in-

formation necessary to execute software with a maximum degree of

simultaneous operation. Using HOS it is possible to maintain

complete asynchronous control of the processing hardware while

minimizing storage use through dynamic memory allocation.

This report presents the Higher Order Machine concept as an im-

plementation of systems that are specified according to the HOS

methodology. The Higher Order Machine (HOM) is a fully distribu-

ted, modular, asynchronous multiprocessing system. It is totally

reconfigurable and has the potential capability of performing any

number of operations simultaneously.

$

1

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 -(617) 661-8900

2.0 MULTIPROCESSING SYSTEM REQUIREMENTS

In Chapter 1, multiprocessing was discussed as a solution to the

demand for greater system throughput. Much more is required of

a multiprocessing system to fulfill the needs of the continually

expanding applications for automatic processing. This chapter ad-

dresses some of the more important constraints that confront opera-
tional multiprocessing systems. Included in the discussion are

the need for greater reliability in "on-line" applications, the

ever-present ecoiomic demand for cost-effectiveness, the de-em-

phasis of hardware structure in a "function-first" approach to

system design, a recognition of the need to "predict the unpre-

dictable" and provide for a reconfiguration capability during

system development, and an ending summary of the impact of these

requirements on multiprocessing system structure.

2.1 Reliability

As automatic processing costs have decreased, more and more of

the operation-critical functions of applications systems have been
made dependent upon the reliable performance of computational

equipment. Electronic component failure rates have been progres-

sively decreasing as the technology has improved, but these reli-

abilities are not sufficient for the safety- and life-critical

functions of many real-time applications. In these critical

applications, it is necessary to provide fault-tolerant cap-

abilities in the processing system to achieve acceptable reli-

ability. This is readily incorporated into multiprocessing sys-
tems because alternate system configurations can be made avail-

able in the event of a hardware component failure. Thus, "fail-

soft" capabilities, where system performance may be degraded by

failures but not interrupted completely, can be built into the

system without the high cost of "back-up" redundancy. If the

execution-time advantages of multiprocessing are to benefit these

highly safety-sensitive applications, then the necessary reliability

must be provided within the system at reasonable costs.

2

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

2.2 Cost Effectiveness

A multiprocessing system would not be economically viable unless

it provided a cost reduction over an equally powerful aggregate

of simplex computers. This cost saving must come from an increase

in hardware utilization during system operation. For example,

increasing parallel-processing.power without intensifying memory

usage will provide no reswltant cost improvement because process-

ing costs are'proportionally increased. A savings would then be

derived only when more use of the same storage space can be made

by multiprocessing, therefore reducing the cost of memory use.

It is also possible to improve the usage of active processing

hardware as well. In a simplex system, a large percentage of

the active hardware is always idle because the system is generally

capable of performing only one of the operations available to it

at any instant. However, a multiprocessing system can be given

the capability of using single-function hardware units indepen-

dently of each other. Distributing the processing logic in this

manner will improve the active hardware utilization in the system.

The cost-effectiveness of a multiprocessing system can be further

improved by relaxing the speed requirements of individual logic

operations. Overall throughput improvements can still be obtained

even if each operation is not as fast as would be necessary in a

simplex system. Thus expensive high-speed logic is not required

for good system performance. What the multiprocessing concept

promises then in economic terms is a means to achieve the perfor-

mance required with less hardware and cheaper components.

2.3 "Function-First" Design Approach

Historically, the design and maintenance of computer hardware re-

presented the greatest cost of an automatic processing system.

As a result, hardware operation dictated the structure of the

system. Software developed as the method by which a fixed machine

was made to perform in a desired manner. However, with current

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE , CAMBRIDGE, MASSACHLSETTS 02139 (617) 661-8900

hardware cost reductions and the increased complexity of present-

day applications, software specification has begun to consume a

major portion of the system cost for both design and maintenance.

It used to be true that orientation of the system development to

the physical machine, rather than to the function it was perform-

ing, caused an overriding importance to be placed on the speed

efficiency of the code produced for it. But it is becoming more

and more apparent that the.overall efficiency and reliability of

the system is more dependent on a unified system structure than

on the cleverness of scattered sequences of programming code.

It is now necessary that a system be analyzed according to the

function it performs. Once the function of the system has been

determined and completely specified, it is then possible to choose V
the best configuration of hardware and software to implement that

function. This can range anywhere between the extremes of a com-

plete software solution on existing "fixed" hardware and a total

hardware solution inwhich the whole function is hardwired. From

this general perspective, there is no categorical difference be-

tween a simplex system and a multiprocessing system. Instead,

a uniprocessor is a special case of the many possible types and

configurations of processing units, communication busses, and

storage units. Thus, with this complete set of hardware configura-

tions to draw from, the best hardware/software solution can be

chosen to perform the desired system function as specified.

2.4 Developmental Reconfigurability

It is generally impossible to complete a system design and have

it perform as required the first time. Even the requirements

often cannot be completely specified beforehand. Usually too

much has to be learned about the function of a system during its

design for this to be accompli3hed. As a result, changes to a

system can always be expected throughout its development and indeed

throughout its life cycle as its requirements evolve and its use

matures. For these reasons, an effective processing system must

be easily reconfigured to adapt to inevitable modifications.

4

HIGHER ORDER SOFTWARE, INC. , 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

Reconfigurability is also necessary in a multiprocessing system

to facilitate molding the physical hardware to the functional re

quirements of the applications system. This was discussed in the

previous section as the "function-first" approach to systems de-

sign. The multiprocessing system architecture would not then be

one machine, but a class of machines from which thebest was chosen

for the particular application, Economic considerations dictate

that the chosen hardware cbnfiguration be assembled without costly
individual redesign. A multiprocessing architecture composed of

discrete modules with well-defined interfaces will fulfill

these requirements. For reconfiguration, modules could then be

added or removed according to the resource-allocation analysis

of the function the system must perform. With this type of flexi-

ble architecture, only the least amount of hardware necessary need

be incorporated into the system. Thus the size, weight, and cost

of the hardware can be minimized with the least design effort.

2.5 Summary of Processing System Requirements

This chapter has outlined some new requirements for computing

machinery in the face of a redirection in the emphasis of system

development from operational hardware to system function. These

requirements may be summarized as follows:

a. Low-cost reliability and fault tolerance should be avail-
able to a multiprocessing architecture design through dy-
namic reconfiguration capabilities.

b. The greatest intensity of use produces the greatest re-
turn for investment in hardware. This can best be accom-
plished by a distributed system in which the large majority
of the hardware components can be simultaneously active.

c. The application function, not the hardware operations,
should dictate the structure of the system.

d. The hardware should be tailored to the functional re-
quirements of the system through a modular reconfigura-
tion capability.

HHE5

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

These considerations must be incorporated into the design of pro-

cessing systems if the trend for applications to become more and

more real-time oriented and safety critical is to continue, and

if these systems are to become economically realizable. The chap-

ters following examine how fully these requirements are fulfilled

by existing multiprocessing system designs and how these require-

ments are implemented within the Higher Order Machine system.

6

" HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900
* *

3.0 EXTANT MULTIPROCESSING MACHINE DESIGNS

This chapter examines current multiprocessing concepts in the face

of the requirements outlined in Chapter 2. The basic classes of

multiprocessing machines that are discussed are the special-appli-

cations machines and the general-purpose multiprocessing systems.

3.1 Special-Applications Machines

The three specia/-purpose parallel machines that are described--

the array processor, the associative processor, and the pipeline

processor--are not intended as all-purpose computational systems.

Instead, each is designed to perform efficiently a particular

function which could be executed by a general-purpose machine

but would take less time using the special hardware.

3.1.1 The Array Machine

The array machine consists of a bank of processors, all

of which respond simultaneously to one sequence of instructions.

The most elaborate operational machine is the ILLIAC IV which has

a set of 64 processing elements [THU75]. These machines are very

effective in dealing with such data types as n-tuples, vectors,

and arrays, which have intrinsic parallelism in their operation

sets.

3.1.2 Associative Processors

Like the array machine, the associative processor has a bank of

processing elements which are controlled by a single instruction

sequence, but greater power is built into each of its processing

elements. The associative-processor elements are content addres-

sable. This means that they have the capability of responding

individually to an instruction depending on the content of their

registers. This characteristic makes the machine very useful

for data-base operations, such as searching for particular con-

texts or sorting data by its content. Banks of these content-

.. 7

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHLSETTS 02139 • (617) 661.8900

addressable elements, which are constructed with comparison logic

only, are called content-addressable memory or associative memory.

In using content-addressable memory, the actual physical location

of data can be neglected and only the structure of the data need

be of concern.

3.1.3 Pipelined Machines

Pipelining is a processing concept in which computation is parti-

tioned into sequential stages. Data from one stage is passed on

to the next for further processing. With such an organization,

concurrent operation can occur because execution may proceed

simultaneously with different data at each stage. As a result

of its structure, effective use of pipelining is limited to spe-

cialized processing of serial data streams.

3.1.4 Summary of Special-Purpose Machines

Although the special-purpose hardware organizations have restricted

applications, they do well what they are intended to do. Indeed,

random-access memory is special-purpose hardware which can only

store and retrieve data. Similarly, these hardware modules should

be thought of as possible additions to a multiprocessing system

that has a larger intended scope.

3.2 General-Purpose Multiprocessing Systems

There are two types of concurrent computation in general-purpose

multiprocessing: (1) simultaneous execution of multiple tasks

and (2) parallel execution of operations within a single task.

This division will aid the evaluation of the capabilities of the

systems designed to perform multiprocessing. In what follows,

four hardware configurations are discussed:

1. the Multiprocessor,

2. the Computation Net Machine,

3. the Data-Flow Machine, and

4. the Single-Assignment Machine.
8

HIGHER ORDER SOFTWARE, INC.. 843 MASSACH'1'SETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

3.2.1 The Multiprocessor

Basic Multiprocessor

The multiprocessor is the most commonly discussed multiprocessing

configuration and, in fact, is the only one of those examined in
this section that is operational. This configuration is a multi-
CPU assembly that is bootstrapped from the common simplex system.
The basic multiprocessor system has a set of independent processing
units which share a common memory space. Conceptually, each pro-

cessor within the machine can perform independent operations for
the same or for different tasks. However, because the processors
share the same memory address space, they must contend for access

to the same physical memory hardware. This creates a problem
that can severely cripple the performance of the whole system.

Because a storage module can service only one memory access at

a time, it is desirable to interleave the memory address space
of the system among several storage modules. But if more than
one processor tries to access the same storage module, all but one

must wait to be serviced. Depending on the numerical ratio of

storage modules to processors, this will cause some percentage
of the execution time to be lost to memory contention. Within

a certain effective limit, this loss can be reduced by increasing

the number of storage modules with respect to the number of pro-

cessors (for a constant storage space). However, this is not a
free improvement and will proportionally increase the total sys-

tem costs attributed to passive storage resources and thus reduce

the cost-effectiveness of the whole system.

Enhanced Multiprocessor

Elaborations of the basic multiprocessor configuration have been
developed to reduce the processing time lost to memory contentions.

Usually this has consisted of some combination of storage dupli-

cation and individual cache memory space. Storage duplication

is simply the process bf keeping identical copies of the most

used portions of memory in different storage modules to increase

their accessability, whereas a cache is a small amount of private

memory assigned to each processor. By using individual cache

HIGHER ORDER SOFTWARE, INC. - 843 MASSACHUSETTS AVENUE - CAMBRIDGE, MASSACHUSETTS 02139 - (617) 66' 8900

memory, it is possible to reduce the total number of accesses to

main memory. This is done by maintaining a working copy of a sec-

tion of main memory in each cache or by storing duplications of

low-level routines or macro-expansions within each processor'[SM173].

Wile both cache memory and storage-duplication techniques will

serve to decrease memory contention, their use will also degrade

the cost-effectiveness of the system. There are two contributing

factors. First, the isolation of some of the memory space in

caches and the replication of portions of the memory contents

will reduce the -intensity of memory usage. Secondly, the software

overhead incurred by the initiation of a parallel path will be

greatly expanded, and as a result, the degree of fine-grain con-

currency must be limited to levels for which parallelism is profit-

able despite the overhead. Both of these side effects are contrary

to the concepts which motivated the development of multiprocessing

systems, i.e., to provide a cost savings over an equally powerful

network of autonomous computers.

Multiprocessor Analysis

The multiprocessor is a logical adaptation of conventional computer

architectures to multiprocessing capabilities. It has the advan-

tages of modularity, in terms of processing units, memory units,

and busses, and of possible fault-tolerant dynamic reconfiguration

capability with internal triad redundancy. However, it has severe

limitations in meeting the requirements outlined in Chapter 2.

Parallelism in the multiprocessor is mostly limited to simultan-

eous execution of different tasks because of the expense needed

to initiate new parallel paths, the memory access conflicts, and the

difficulty of manually programming the dynamic interaction of the

processing units. A certain amount of pipelining is possible with-

in an individual processor, but this is limited by storage-address

dependencies and instruction dependencies. The multiprocessor

primarily exhibits centralized control and suffers generally from

low-usage intensity because each processor must execute instruc-

tions sequentially. This coarsely organized modularity also af-

fects the costs of dynamic reconfiguration because, in the event

10

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-800

.. 1

that a processing unit exhibits a hardware fault, the use of the

complete processor must be discontinued.

The most critical deficiency of the multiprocessor from a "func-

tion-first" systems viewpoint is its fixed architectural struc-

ture. The possibility of optimizing the hardware to the applica-

tion function without costly redesign is thus eliminated. This

can be alleviated somewhat--by "microprogrammable" and "nanopro-

grammable" architectures which allow redefinition of different

levels of hardware control, but such a system still derives its

structures from a predetermined, fixed hardware. An organization

of this nature is contrary to the concept of allowing the function

to determine the extent and form of the hardware. The architec-

ture of the multiprocessor reflects its bootstrapped development

from a fixed single-processor computer and exhibits the similar

necessity of limiting software definition to the "machine domain"

instead of the "function domain."

3.2.2 The Computation-Net Machine

Net-Machine Structure

The core of the computation-net machine [SYL75] is a hardware

array of arithmetic microprocessors (AMPs), each of which can take

up two input operands and an operator and output one operand as

the result of the indicated operation. The net machine has dif-

ferent storage units for instructions and operand values--the in-

struction memory (IM) and the operand memory (OM) respectively.
The AMPs can traffic among themselves and with the IM and OM via

a set of operational registers. A sequence and control unit (SCU)

directs operations and traffic within the system. The SCU inter-

prets instructions from the IM, fetches and stores operands in

the OM, and organizes the operations performed by the AMPs, all

via a queue and bus system.

Arithmetic Computation Nets

Operation of the net machine is based on the concept of arithmetic

computation nets. A net is the decomposition of an arithmetic

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

: " - :,,,- .. .i - - ' .. . ' -" m ,, .. .I IN H / e llllr

expression into an input/output mapping of primitive operations

which can be performed by an AMP. A net composition of the ex-

pression, e = (a+b)*(c-d), for example, is illustrated in Fig-

ure 3.2.2-1.

e a b + c d -

AMP #1 PAP # 7

AMP # 3

Figure 3.2.2-1
Arithmetic Computation Net for e = (a+b)*(c-d)

In a compilation process from a language used to define sequen-

tial arithmetic computation, a control code and instructions are

generated for each net and stored in the IM. The control code

is used to organize and link the AMP operands and to synchronize

operand traffic.

Net-Machine Qperation

Each net executes within the array of AMPs. Net execution is com-

pletely synchronous and is specified during compilation. Concur-

rent computation can take place for independent operations such

as AMP #1 and AMP #2 in the example. AMP #3 could not execute

until both AMP #1 and AMP #2 had produced their output, but if

the net were larger, there could possibly be other operations

executing concurrently with AMP #3. The size of the nets, and

12

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

therefore the concurrent capability of the computation-net ma-

chine is limited by the number of AMPs in the array because an

AMP can be assigned only one operation in each single net execu-

tion. The net size is also limited by program-control logic since

the language is strictly sequential and all transfers must sepa-

rate nets. Address dependencies must also separate nets because

all operand fetches must be made before net execution is initia-

ted. When an address is- computed dynamically, its operand fetch

must be made in the beginning of the next net cycle. Through

simulation (SY-L75], it was found that ten APs in the array

were.*typically the most that the logical programming restric-

tions or net size would allow.

Net-Machine' Analysis

The arithmetic computation-net multiprocessing system is strict-

ly a single-task machine that can have a concurrency of up to

approximately ten simultaneous operations. However, there is

no reason that more than one net processor could not share the

same memory space and therefore have the capability of executing

multiple tasks simultaneously. Although such a configuration

would have the same structural deficiencies as the multiproces-

sor, the internal parallelism of each processor would be increased

significantly. The extent of overhead for initiation of a paral-

lel process might also be reduced because each net could be treated

as a logical machine instruction.

3.2.3 The Data-Flow Machine

Data-Flow Language Concept

The Data-Flow Machine was designed to execute Data-Flow programs

(RUM751. Data-Flow programs are composed of procedures in the

conventional sense, but Data-Flow procedures are defined in a

particular manner and are designed to specify only deterministic

computations. The Data-Flow Language is based on the concept

that a datum is an autonomous entity, called a token, which is

created by some particular operation and used or consumed by

HIGER13

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (61 7) 661-8900

.- .-

another. A Data-Flow procedure is specified as a directed graph

in which the nodes are operations and the directed links are one-

way channels over which tokens travel. An operation executes

(or fires) when all its argument tokens have appeared at its

input links. It then "consumes" its input tokens and subsequent-

ly emits its result tokens at its output links. All operations

in a Data-Flow procedure are.asynchronous and depend only on the

presence of input. A procedure is initiated by the presence of

procedure argument tokens at its input and is completed when

all the result tokens are produced at its output. One procedure

can invoke another by use of an application mechanism for which

the invoked procedure is considered an operation node at the

outer level. The set of Data-Flow operations include conven-

tional function operators as well as special mechanisms for flow

control such as switches, unions and duplication-branch nodes.

A Data-Flow procedure is basically a flow diagram something akin

to a model-train layout. In this analogy, data tokens would be

engines which carry values, operation nodes are junctions which

can alter the token in some specified manner at a particular

point in the line, and a control node is either a switch which

operates from a signal token from another line, a duplication

branch which sends out another duplicate train along a second

line, or a union junction which meshes two sets of lines into

one set.

Data-Flow Machine

The hardware architecture of the Data-Flow Machine is organized

around a set of activation processors which implement the com-

putation of a Data-Flow procedure. An activation processor op-

erates on a procedure after it has been invoked until no more

computation can be performed because of outstanding procedure

calls. At this time, the procedure is deactivated and the
activation processor takes up the computation of a newly acti-

vated procedure. When results become available from invoked

procedures, the dormant procedure that had made the invocations

is reactivated and computation is continued. Actual computa-

14

HIGHER ORDER SOFTWARE, INC. . 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8901

tion is performed in an activation processor by an execution pipe-

line. The execution pipeline consists of a parallel set of func-

tional units in series with modules which control the pipeline

operation. The functional units perform the primitive Data-Flow

operations. Several operations may be executed concurrently by

different stages of the pipeline, and, if loaded, the functional

units can operate simultaneously. Concurrency of operation in the

Data-Flow Machine is realized through simultaneous execution of

multiple activation processors and through the overlap of functional

processing within the execution pipeline of each individual acti-

vation processor.

Data-Flow Analysis

The Data-Fl6w Language represents a significant step above con-

ventional programming toward the specification of software as a

function instead of as directed operations on a machine. Data-

independent operations, where the input to one does not depend

on the output of the other, are intrinsically identified in the

language. Thus parallelism is automatically detectable at any 1

level. Side-effects cannot exist also because all data paths

must be identified. However, the Data-Flow Language,as it is,

is not suited to system specification because it is very low-level

and difficult to use. This defficiency may possibly be overcome

by the development of a suitable high-level language (perhaps

similar to the Single-Assignment Programming Language discussed

in the next section). Of more serious consequence is the fact

that data links are not uniquely identified outside of the pro-

cedure in which they exist. This results in a less distributed

machine than might possibly be developed. In the Data-Flow Machine,

all operations must be executed within the "umbrella" of their

procedure activation, causing artifical limitations on the size

of procedures and unnecessary overhead in activating and deacti-

vating procedures. The Data-Flow Language is also limited in the

definition of its data types. The Data-Flow Procedures as des-

cribed are more implementations of a calculation in terms of given

15
S

HIGHER URDER SOFTWARE, INC.. 843 MASSACUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-890Y)

-I

data types than the specification of a function. Implementing

a particular calculation instead of specifying a function to be

performed eliminates the selection of other possibly more effi-

cient implementations. The Data-Flow Language does not specify

a functional hierarchy but instead defines the lowest-level cal-

culations to be performed. Thus there exists no facility for

recovery from invalid inputs to a module and no inherent priority

structure to guarantee that all the internal procedures of one

module can interrupt all the internal procedures of another module

of lower priority. Finally, no provision is made in the Data-Flow

Language for the existence or passage of time or for the specifi-

cation of non-determinate functions such as I/O operations and

external events. These are all necessary functions that must be

considered in real-life systems.

3.2.4 Single-Assignment Programming Concept

The concept of single-assignment programming was developed as a

possible solution to the problem of organizing a multiple sys-

tem of independent processors to perform in concert without in-

terference of operation. To achieve this, it was recognized that

each new value that is generated by a processor must have a unique

identification. Thus, a variable must be assigned a value

only a single time. Adherence to this constraint provides auto-

matic detection of all possible parallelism in the execution of

a specified computation. This is apparent because any two speci-

fied operations that are simultaneously ready for execution may

be executed in parallel. An instruction may be performed just as

soon as all the variables that it uses have been defined. Hence,

there is no programmed "flow of control;" the sequence of in-

struction execution is'determined by flow of the generation and

subsequent use of data. The single-assignment programming lan-

guage, SAMPLE (for Single-Assignment Mathematical Programming Lan-

guagE), and a simulated machine-concept to execute it were developed

by Chamberlin [CHA71].

16

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-8900

Single-Assignment Programming Language

There are two data types in SAMPLE, real numbers and tuples, con-

sisting of ordered sets of numbers or other tuples. Standard ex-

pressions and assignments permit the specification of arithmetic

computation. There exists a conditional assignment statement with

a boolean-valued predicate to allow programmed control of the

computational flow, and there are two types of iteration control for

either simultaneous or necessarily-sequential computation. Simul-

taneous iteration is used in replicated instructions on tuples,

and sequential iteration is supported by a looping mechanism.

Programs in SAMPLE may have a block structure through which vari-

able-naming scope is controlled, but memory allocation will not

be affected because computation flow is independent of instruction

listing.

Single-Assignment Machine Structure

The hardware system has three passive storage units-- aninstruc-

tion store, a data store, and a ready list. The instruction store

contains the program in primitive hardware operations. Each op-

eration calculates one output operand; the status of each in-

put operand is maintained in the instruction of a "ready" flag
which indicates the existence of its value. The data store con-

tains the user data. A data cell has provision for a value as

well as a pointer to the instruction which uses that value. If

more than one instruction uses the value, then they follow the first

in a linked list. If the variable is a tuple, then its value is itself

a pointer to a contiguous set of cells which hold the tuple values.

The ready list contains copies of all instructions that are ready

to be executed because all their input operands have been defined.

Active logic is contained in a set of independent processing

units which execute in parallel operation.

System Operation

Computation is performed in instruction-execution cycles in which

each processor repeats the following sequence of actions (SYL75]:

17

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

7[
1. The processor fetches from the ready list an instruc-

tion which is ready to be executed.

2. The processor fetches from the data store the input
operands of the instruction and performs the indicated
operation on them.

3. The processor writes the resulting output operand into
the data store. In the same storage-access cycle, it
obtains the pointer to an instruction which is waiting
for the newly-ready cell, if any.

4. The processor follows the linked list of instructions
which are waiting for the newly-ready data cell. For
each such instruction, it does the following:

a. It turns on the ready bit of the newly-ready
operand.

b. If all ready bits are now on, it copies the in-
struction into the ready list.

c. It obtains the link to the next instruction on the
waiting list.

Iteration and function invocations are handled by dynamically

generating new instructions during execution. In a tuple instruc-

tion copies of each instruction are replicated for each element

of the tuple. Function invocations are made by filling in the

input variable "names" in the proper locations in a template of

the function instructions. A new copy of all the instructions

of a loop body are generated with each execution of the loop to

preserve single assignment. A concept of "levels of readiness"

must be introduced in the execution of a loop, because all instruc-

tions in the currently executing copy of the loop must have been

performed before their output variables may be referenced by ex-

ternal instructions.

Single-Assignment Analysis

Single-assignment programming and Data-Flow layouts are very simi-

lar in that they both express low-lev(Dperations on data. This

is a significant departure from sequential programming which ex-

presses non-unique operations on hardware components. However,

18

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8Q00

a hierarchical functional structure is still lacking. In the
single-assignment techniques, this results in the inability to de-

termine when the storage for data may be reallocated.' Without

a functional hierarchy, each data reference cannot be identified,

and it is therefore impossible to determine when all references

have been made. As with the data-flow techniques, timing and
response to non-deterministic events are not provided for in the

single-assignment language

3.3 Summary of Extant Multiprocessing Concepts

In examining the current multiprocessing system concepts, the need

for an adequate means of expressing functional relationships be-

comes apparent. The Single-Assignment and Data-Flow techniques

are less machine oriented than the sequential programming of the

multiprocessor or the net machine. None of these software tech-

niques, however, is able to support the execution of a completely
distributed, asychnronoussystem. The next chapter will establish

the methodology of Higher Order Software as the solution to this

problem.

E O19

SHIGHER ORDER SOFTWARE, INC . 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139.(617) 661-8900

4.0 SPECIFICATION OF CONCURRENT PROCESSES

Before the solution to a problem has been defined, it is impossible

to determine how this solution can best be implemented for actual

execution. This is the reason why the problem must be specified

in a manner that is totally independent of any particular imple-

mentation. Higher Order Software (HOS) makes possible just such a

problem description. HOS is a formal methodology for the specifi-

cation of reliable systems that include components of hardware,

firmware, software, and humanware and of the dynamic environ-

ment within which these systems reside. It is a formal theory

based on a set of axioms that define a functional hierarchy for

complete and consistent computable systems. The axioms formalize

the interfaces, functional influences, and internal control of the

system. The HOS theory is detailed in [HAM76a,b,c]; the language

'for HOS system specification, AXES, is described in [HAM76c].

Higher Order Software provides a solution to the problem of speci-

fying concurrent, asynchronous processes. An HOS specification

includes the information necessary to execute software with the

maximum degree of simultaneous operation. Using HOS, it is pos-

sible to maintain complete asynchronous control of the processing

hardware while minimizing storage use through dynamic memory alloca-

tion.

As-discussed in Chapter 1, the primary goal of implementing a

multiprocessing system is to gain the time (and therefore cost)

advantage of concurrent computation. This chapter investigates

the reasons that HOS makes possible the maximum use of all active

processing hardware in an implementation and the minimization

of passive storage use in the system during execution. The first

section develops these concepts in comparison with other methods

of software definition, and the second examines their form and

implementation in the actual software of the Higher Order Machine.

20

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE • CAMBRIDGE, MNSSACHUSETTS 02139 • (617) 661-8900

4.1 Implementation Concepts for Multiprocessing Software

During the execution of concurrent processes, it is essential

to determine when an instruction may be executed. This is so

because it is desirable to execute all instructions as soon as

possible and thereby maximize the system throughput., Equally

important is the need to delay the allocation of storage space

to a particular datum until its value is generated and to re-

lease that storage for further service as soon as its value is

no longer needed. Through this practice, the use of the avail-

able space may be intensified to as great a degree as possible. '
This will minimize the overall memory requirements for the sys-

tem and maximize its cost-effectiveness. This section investigates

the mianner in-which these goals may be attained in the implementation

of a multiprocessing system through proper specification of soft-

ware. The implementation concepts that are developed are the

determination of the execution readiness of an instruction, the

unique identification of each entity of data within the system,

and the scope limitations of data access for software modules.

4.1.1 Instruction Readiness

Functionally, any primitive hardware operation in a system is

ready to begin execution as soon as the values of all its input

operands have been defined and are available. This is the only

necessary criterion. In an HOS specification, this condition

is detectable dynamically because of adherence to the single-

assignment property. This has been described for single-assign-

merit programming in Section 3.2.3. This information is much the

same as that provided by a data-flow layout in which each datum,

or token, is uniquely identified not by name, but by its loca-

tion on a particular link. In data-flow layouts, separate paths

arc provided for each datum so that an operation ccri identify

S each input uniquely as it becomes available on the link. Single-

assignment prograning techniques provide for unique identifica-

tion of each datum and fcri flac!s at each instruction tc signal theI. availability of each input operand. (Of course, the use of some

21

flag mechanism is actually the only way that a data-flow layout,

as well, could be implemented unless it were hard.*ired.)

This specification of instruction readiness does not exist in

sequential programming. Each datum is identified by its storage-

space address and the same memory location is used over and over

for different data, so, as-a result, the execution of each opera-

tion must be made in proper sequence under the assumption that

all its input operands are properly defined. This condition

must be guaranteed in the program design, and thus creates,

to a large extent, the need for programming skill in the soft-

ware development as well as causing greater propensity for pro-

gram anomalies.

4.1.2 Data Entity Concept

If the single-assignment technique is to benefit a multiprocessing

system that must have cost-effective memory consumption, then

the concept of an autonomous, uniquely identified datum must

be introduced. It is necessary that the identity of. each entity

of data be made independent of the manner in which its value

is stored. Only in this way can the same memory location be

reused for different data while retaining the explicit definition

of execution readiness for each operation. This storage independ-

ence is lacking in single-assignment programming and results

in economically unfeasible memory consumption.

Once the software specification is made independent of the char-

acteristics of the machine, then more explicitness can be re-

quired of the specification, thus eliminating any implied condi-

tions or restraints. An HOS specification includes this defini-

tional exactness. Specifically, to make possible the explicit

definition of operation readiness as well as reuse of storage

locations, it is necessary to require that a variable be refer-

enced only once as well as assigned only once. This single-

22

HIC.HFR nRfFR SOFTWARE INC., 843 MASSACHUSETI5 -NVLNUE ,CAMBRIDGE. MASSACHUSETTS 02139 ,(617) 661-89C-

reference property requires that a new primitive operation be de-

fined which would perform this replication function. This opera-

tion, called a CLONE in AXES, would input a single datu and out-

put a datum set, each member having a unique identity but also

having a value that is the same as that of the input. This func-

tion is analogous to the duplication branch in a data-flow defini-

tion (called a "wye" operation).

In implementation, it is not necessary that physical copies be

made of a datum that is referenced more than once. The single-

reference constraint and the replication function are required

for definitional explicitness, not for machine operation. It is
through this practice that it is possible to determine dynami-

callywhen all references have been made to a datum so that the
memory space it has been occupying can be reallocated. Since

all references are specified and each is uniquely identified, a

counting mechanism may be maintained which will indicate when a

value can be discarded. However, in a multiprocessing environ-

ment, it may prove more time-saving actually to create a new

physical copy for each reference. This would eliminate memory

contention which can consume an inordinate amount of processor

time. For simple data types, this practice may not use much

more memory space because nearly as much space is required to

store an address reference to a value as to store the value

itself.

4.1.3 Software Module Scope

The single reference and single assignment of variables in the

specification of software have been discussed in the previous

sections as definitional constraints which permit dynamic

memory allocation and the detection of instruction readiness.

In HOS, these requirements result from axioms which govern

the scope limitations of data within a software nodule. An

HOS specification is a hierarchy of software mcdules which must

be constructed in a manner consistent with the specification

23

HIGHER ORDER SOFTWARE, INC. • 843 %MASSACHUSETTS AVENUE . CAMBRIDGE, MASSACHUSETTS 02139. (617) 661-8900

axioms. (The consequence of compliance with these axioms dt the

design level of abstraction with respect to interface correct-

ness and data-type operations are developed in [HAM76a,b,c].)

With respect to data, an HOS module is a unified functional

mapping from the module input to the module output. The module

input and output are different data sets and are the only means

through which a module may have external communication. Side

effects due to data can therefore not exist in a software opera-

tion. (Side effects due to relative timing and undefined func-

tional mappings are prevented by restrictions resulting from
other axioms on the ordering of submodules and the rejection
of invalid inputs). The data scope constraints imposed by the

HOS axioms can be summarized as follows:

a. All data identified within a module are local to the
module except members of the module's input and output
sets.

b. A module may not assign values to any data external to
itself unless that data is part of its output set.

c. An invoked module has reference access only to external
data that is part of its input set.

d. A module may reference but not assign the values of its
input set. (This results in the single-assignment
constraint).

e. A controlling module is solely responsible for providing
the input set and receiving the output set of a module
which it invokes. Therefore, no other module has access
to the data within an invoked module except the controller
which makes the invocation, and this he- access to
only the input and output sets.

These data-access constraints permit the single-reference require-

ment in an HOS specification, whereas the lack of scope limita-

tions in a single-assignment program conceals data concordance.

This makes it impossible during the execution of a single-assign-

ment program to determine when the references to a datum have all

been made.

24

HIGHER ORDER SOFTWARE. INC." 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 • (617) 661-890.3

4.2 Instruction Readiness, Memory Allocation, and Module
Scope Conclusions

The results of this discussion may be summarized by attributing

the ability to detect instruction readiness to the single assign-

ment of variables, the capability of performing dynamic memory

allocation to the single reference of variables, ancf the pre-

vention of data-induced side-effects to module-scope constraints.

An instruction may be executed when all its input operands have

been defined. Under single-assignment, this condition exists

as soon as all the input variables have been assigned values.

In conjunction with this, the single-reference property permits

the determination of the dynamic allocation of remory to a

variable--memory is allocated when its value is assigned and is

released after its value has been referenced (or after all refer-

ences have been made if a counting mechanism is used instead

of separate copies for each reference). At the module level,

these two constraints cause a module to be functionally equiva-

lent to an operation with deterministic behavior and no data

side-effects, i.e., the module references only its input and

it assigns its output through a deterministic functional mapping.

The implementation of these concepts within the Higher Order

Machine has been outlined.

Sq

25

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE CAMBRIDGE, MASSACHUSETTS 02139 (617) 661-8900

5.0 CONCLUSION

The Higher Order Machine concept has been presented as a solution

to the problem of utilizing the full computational power of cur-

rently available hardware. In comparison with a cross-section

of extant multiprocessing architectures, the Higher Order Machine

(HOM) has been found to be uniquely capable of:

1. any degree of processing concurrency thereby maximizing
computational throughput,

2. total dynamic memory allocation which minimizes storage
consumption,

3. fully-distributed operation which provides maximum hard-
ware utilization (both passive and active) and insures
greatest cost-effectiveness,

4. a complete modularity in construction which permits the
hardware configuration to be determined by the applica-
tion requirements,

5. the reconfiguration of Primitive Hardware operations which

allows optimization of the hardware/software implementa-
tion trade-off,

6. the simplicity and reliability that results from the
elimination of the excess hardware required for control
of systems that are not structured by HOS.

These hardware capabilities become possible only through the for-

malized specification of software according to the principles

of Higher Order Software (HOS). An HOS specification is an ab-

stract hierarchical decomposition depicting the functional char-

acteristics of a system, rather than a set of operations on fixed

hardware. It therefore defines interactions of data at any level

of abstraction and permits the automatic identification of both

Primitive Hardware Operation readiness and dynamic memory alloca-

tion which together produce the unique capabilities of the HOM.

The modularity and distributed control inherent in HOS and re-

flected in the structure of the HOM facilities the incorporation

of fault-tolerant capabilities throughout the system. This allows

the design of safety-critical systems to have a greater depend-

ence on the reliable operation of computational equipment.

26

HIGHER ORDER SOFTWARE, INC.. 843 MASSACHUSETTS AVENUE .CAMBRIDGE, MASSACHUSETTS 02139 . (617) 661-8900

The ability of the HOM to provide unlimited processing concurrency

and minimized storage consumption with sufficient reliability could

make possible many applications for automatic computation that

were previously not feasible. Of increasing importance in the

development of complex systems is computer simulation to verify

the system operation before great expense is invested in building

operating prototypes. The HOM can provide fully-digital simula-

tions that execute faster than real time without the expense of

long hours ofoperation on costly high-speed hardware. Because j.
increased accuracy and greater simulation complexi:y need not

affect simulation execution time on the HOM, much more reliable

results can be attained.

The organized'use of extensive processing concurrency also can

have great impact on the feasibility of automated manipulation and

control systems. The development of automated construction and
assembly facilities has been hindered by the volume of data that

must be processed simultaneously in order that the system operate

in real time. More accurate, flexible control systems can thus

be made possible with concurrent processing, relieving the time

constraints on control-law computations for time-critical tasks.

When this capability is provided with thereliability necessary for

safety-critical applications, the performance of life-critical

functions suchasintactical-communications networks and aircraft-

flight control can be greatly enhanced by increased reliance on

automatic systems. The key to these and many other improved-per-

formance applications is the availability of sufficient concurrent

computation with sufficient reliability fcr the minimum, necessary

investment in.cost, weight, and size of processing hardware.

This is what can be provided by the HOM for systems specified

by HOS.

I

* |27

HGHER ORDER SOFTWARE, I C., E43 MASSACHUSETTS AVENUE • -A MBRIDGE, MASSACHUSETTS.,0139 ,(617) 661S o ,

REFERENCES

CHA71 Chamberlin, D.D. "The 'Single-Assignment' Approach to
Parallel Processing."

HAM76a Hamilton, M. and Zeldin, S. "Higher Order Software--
A Methodology for Defining Software." IEEE Transactions
in Software Engineering, Vol. SE-2, No. 1, March 1976.

HAM76b Hamilton, M. and Zeldin, S. "Integrated Software De-
velopment System/Higher Order Software Conceptual De-
scription," Version 1. Cambridge, MA: Higher Order
Software, Inc. November 1976.

HAM76c Hamilton, M. and Zeldin, S. "AXES Syntax Description."
Cambridge, MA: Higher Order Software, Inc. December
1976.

RUM75 Rumbaugh, J. "A Parallel Asynchronous Computer Archi-
tecture for Data Flow Programs." Project MAC, Cambridge,
MA: Massachusetts Institute of Technology. May 1975.

THU75 Thurber, K.J. and Wald, L.D. "Associative and Parellel
Processors." ACM Computer Surveys, Vol. 7, No. 4,
December 1975.

SM173 Smith, III, T.B. "A Highly Modular Fault-Tolerant
Computer System." Document T-595. Cambridge, MA:.
The Charles Stark Draper Laboratory, Inc., November
1973.

SYL75 Sylvain, P., et al. "The Design and Evaluation of the
Array Machine: A High-Level Language Processor."
Computer Science Department, University of CA, Los
Angeles, CA, 1975.

i

28

HIGHER ORDER SOFTWARE, INC. • 843 MASSACHUSETTS AVENUE •CAMBRIDGE, MASSACHUSETTS 0213

